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Discovering invariants via machine learning
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Invariants and conservation laws convey critical information about the underlying dynamics of a system, yet
it is generally infeasible to find them from large-scale data without any prior knowledge or human insight.
We propose ConservNet to achieve this goal, a neural network that spontaneously discovers a conserved
quantity from grouped data where the members of each group share invariants, similar to a general experimental
setting where trajectories from different trials are observed. As a neural network trained with an intuitive loss
function called noise-variance loss, ConservNet learns the hidden invariants in each group of multidimensional
observables in a data-driven end-to-end manner. Our model successfully discovers underlying invariants from
the simulated systems having invariants as well as a real-world double-pendulum trajectory. Since the model
is robust to various noises and data conditions compared to the baseline, our approach is directly applicable to
experimental data for discovering hidden conservation laws and further, general relationships between variables.
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I. INTRODUCTION

Modern science greatly depends on the mathematical mod-
eling of given systems and finding the internal structures
between observables. One of the most important concepts in
system modeling is the invariants that underlie the system dy-
namics, which provide significant information about structural
symmetries and low-dimensional embeddings of the system.
Invariants and symmetries are fundamental building blocks of
nearly all physical systems in nature, such as classical systems
with Hamiltonians, gauge orbits, and many other dynamical
systems. Scientists have long attempted to identify the hidden
correlations and interactions among the observables of such
systems by discovering the conserved quantities and underly-
ing symmetries.

Recently, with the advent of large-scale data and phe-
nomenal advances in machine learning in physical sciences
[1–12], various studies have contributed towards the automa-
tion of science [13], referring to current efforts to reveal
scientific concepts and construct models solely from ob-
served data without human intervention [14–24]. Following
this line, several studies have attempted to accomplish the
automated discovery of conserved quantities with neural net-
works [21–24]; limitations of these works though include the
requirements for additional nonautomated preprocessing and
often a great number of data sets from different conditions, as
well as the ability to only infer the number of invariants. Real-
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world empirical data are often sparse, noisy, and scattered
into small groups, and hence a model for automated discovery
needs to be robust to such harsh conditions.

In this study we introduce ConservNet, a neural network
to discover conserved quantities in grouped data, such as tra-
jectories, without any prior knowledge of the system. Instead
of explicitly restricting the model to ensure certain symme-
tries, we propose a loss function that facilitates the model to
directly learn the invariant function. We show that ConservNet
robustly finds an invariant by reducing the intragroup variance
of its output while preventing convergence into trivial constant
functions. Our model can be applied to a variety of realistic
data conditions with multiple groups, is robust to noises and
nuisance variables, and employs a pipeline from raw data to
invariants in an end-to-end manner that enables the direct
extraction of symbolic formulas. We examine the capability
of ConservNet by applying it to five model systems ranging
from synthetic invariants to physical models that cover diverse
functional forms, along with experimental trajectory data of
a double pendulum. The robustness of our method clearly
demonstrates the potential of ConservNet to be applied to real
systems where data are sparse and no conservation laws are
known.

II. NOISE-VARIANCE LOSS

Throughout this paper, the data condition (N, M ) indi-
cates that the data are divided into N groups, in which each
group shares the same invariant and has M data points. Our
goal is to find conserved quantities hidden in such grouped
d-dimensional data that are expected to have at least one
invariant. We assume that the system has an invariant function
V that satisfies V (xi j ) = Ci for all xi j ∈ Gi, where Gi denotes
the ith group and xi j ∈ Rd is the jth input data of dimension
d from group i.
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In order for the model to properly approximate the invari-
ant, it needs to satisfy two important criteria. First, the desired
model should produce a ground-truth invariant C, or at least a
value strongly correlated with the true invariant. Second, the
model output from the same group should be equal in the ideal
case, or at least its deviation should be minimized.

To satisfy the second criterion, the loss function L for
the neural output Fθ should decrease the intragroup variance
of the outputs from each group, and thus the variance term
Li,var = M−1∑

jFθ (xi j )2 − [M−1∑
jFθ (xi j )]2 should be min-

imized. Here the naive optimization of this loss function will
generally fall into trivial minima. As an example, the whole
class of simple multivariate functions f : Rd → C0 for any
real value C0 becomes one of the global minima of Li,var since
the output is constant regardless of the input. Convergence to
such a trivial solution would violate the first criterion in our
case.

Thus, we need to guide Fθ to capture a nontrivial invariant
besides a constant function. In this study we inhibit trivial
convergence by adopting a spreading term that increases the
variance of the output from improper input, such as perturbed
input with noise. This spreading loss can be expressed as
Li,noise = |Q − Var[Fθ (xi j + εi j )]|, where Q is the spreading
constant and εi j denotes a random noise vector, whose L2-
norm is bounded to R = max(‖εi j‖2). Here Q restricts the
absolute value of the variance of the outputs from perturbed
inputs, since optimization without this constraint will lead Fθ

into a diverging function, ignoring the variance minimization
term. Thus, the relative scale of Q and R controls the fineness
of the spreading. Similar intuition for spreading loss can be
found in a contrastive loss in self-supervised learning [25–27],
which also needs to increase the distance in representation
space between different classes while preventing divergence.
Combining two terms and summing over all groups, the loss
function for ConservNet becomes

L =
∑

i

Li =
∑

i

Var[Fθ (xi j )] + |Q − Var[Fθ (xi j + εi j )]|.

(1)

We propose this loss function for capturing an invariant as
noise-variance (NV) loss, as schematically depicted in Fig. 1.
We prove that two competing terms in NV loss inhibits trivial
convergence by preventing the gradient ∇Fθ from becoming
�0 ∈ Rd [28], whose implication can be physically interpreted
if the system has a well-defined Hamiltonian H . In the lan-
guage of Hamiltonian mechanics, the model aims to learn a
constant of motion G with various energy levels, which is a
generating function of the (infinitesimal) canonical transfor-
mation that leaves given H invariant [29]. This implies that
dG
dt = {G, H} = ∂G

∂q
∂H
∂p − ∂G

∂p
∂H
∂q = 0, where p and q are gener-

alized positions and momenta. If ∇G = �0, then dG
dt becomes

zero regardless of the form of the Hamiltonian, and such a G
represents a stationary transformation which conveys no in-
formation about the system. In this sense, spreading loss thus
prompts the model to learn nontrivial canonical transforma-
tion by letting the model output from the set of noncanonical
transformations, namely, the perturbed trajectory cannot form
a constant of motion by a margin of Q.

FIG. 1. Schematic overview of ConservNet and the role of noise-
variance loss. Each group of data, which is a time series of planet
trajectories in this example, is fed into the model and optimized to
minimize the noise-variance loss.

III. NEURAL MODEL CONSTRUCTION AND TRAINING

ConservNet is a feedforward neural network constructed
with four hidden layers with a layer width of 320 neurons
and a single output neuron, using Mish [30] as an activation
function. Our model receives system data xi j and produces a
single scalar value Fθ (xi j ) that aims to approximate the map-
ping function from states to conserved quantities. The noise
vector εi j is newly sampled from the multivariate uniform
distribution at every batch with the proper scaling. In prac-
tice, we employ standard deviation σ (x) = √

Var(x) instead
of variance Var(x) as a measure of variance.

As a baseline for comparison, we trained a recently pro-
posed Siamese neural network (SNN) [23] along with our
model. This SNN architecture extracts an invariant by clas-
sifying whether two data points are from the same instance or
not, similar to [21]. Both ConservNet and the SNN are trained
with the Adam [31] optimizer using PYTORCH [32] for 50 000
epochs with early stoppings. For all experiments, Q = 1 and
the spreading noise vector εi j is sampled from the uniform
random vector with the maximum norm R = 1 [28].

IV. MODEL SYSTEMS AND DATA SETS

In this study, the ability of ConservNet is tested with three
synthetic systems, two simulated model systems, and a real
double-pendulum data set from [15]. The functional form of
each invariant is presented in Table I. Three synthetic sys-
tems S1, S2, and S3 are constructed to show a variety of
functional forms such as cubic, trigonometric, logarithmic,
and rational functions. For the Lotka-Volterra system ( dx

dt =
αx − γ xy and dy

dt = −βy + δxy) [33] and the Kepler prob-

lem (HKepler = p2

2m − GMm
r ), data are simulated by numerical

integration with Euler’s method. We find that normalizing
the scale between variables improves performances, and thus
variables with maximum values exceeding 10 are rescaled by
a factor of 0.1 [28].
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TABLE I. Systems and invariants for verification. We use
α, β, δ, γ = (1.1, 0.4, 0.1, 0.4) for the Lotka-Volterra system and
m = 1 and GM = 1 for the Kepler problem. For the double-
pendulum case, the ideal Hamiltonian is given.

System Invariant formula

S1 C = x1 − 2x2x3 + 3x2
4

S2 C = 3x1 + 2 sin(x2) + √|x1|x3
3

S3 C = 2x1x2 − [ln(|x1 + x3|) − x4]/x3

Lotka-Volterra C = α ln(x) + δ ln(y) − βx − γ y
Kepler problem C1 = xvy − yvx

Kepler problem C2 = 1
2 m(v2

x + v2
y ) − GMm

r
Kepler problem C3 = p × L − mkr̂
double-pendulum Cideal = L2

1 (m1 + m2)ω2 + m2L2
2ω

2

(experiment) +2m1m2L1L2ω1ω2 cos(θ1 − θ2 )
−2gL1(m1 + m2) cos(θ1) − 2gm2L2 cos(θ2)

V. RESULTS

We prepare 2000 training data with various data conditions
(N, M ) and an equal number of test data for all simulated
systems, which is notable as a small amount compared to
modern deep learning and other related studies [22–24] that
typically employ more than 10 000 data. These conditions are
addressed to replicate practical situations with high data costs
and a limited number of different observations, common in
physical and biological data. The code for data-set generation
and model training is publicly available from [34].

The model performance of ConservNet is evaluated by
the two aforementioned criteria: high correlation with the
ground-truth invariant and small intragroup variance. We use
Pearson correlation ρ and mean intragroup standard deviation
σ̄ = 1

N

∑
σi for each criterion.

Figure 2(a) illustrates the notable performances of Con-
servNet, simultaneously finds invariants from multiple groups
at once, achieving strong Pearson correlation and small in-
tragroup variation in every model system. For the case of
multiple invariants in the Kepler problem, ConservNet cap-
tures the angular momentum first and finds the energy second
when the angular momentum is controlled (see [28] for an
analysis of multiple invariants). Figure 2(b) shows the result-
ing statistics of ConservNet for S2(20, 100) as an example
case. We can observe that our model shows smooth con-
vergence without overfitting, while its σ̄ decreases and ρ

approaches 1. ConservNet shows consistent performance for
different data conditions (N, M ) as presented in [28].

We further investigate the capability and robustness of
ConservNet by applying several different conditions prevalent
in experimental data. First, we check the impact of noise on
the data sets by adding noise N (0, s) with various strengths
s. Figure 3(a) shows that ConservNet gives consistent per-
formances under the noisy condition, with better correlation
compared to the baseline. ConservNet effectively increases its
data size by adding new random noise to its data set for each
batch, thus showing better sample efficiency [35] and perfor-
mance with inherent robustness to noise [36]. We also find
that if the data have no invariant, our model draws attention to
it by a strong overfitting [28].

FIG. 2. Model performances of ConservNet. (a) Ground-truth in-
variants C versus fitted ConservNet outputs F̂θ = aFθ + b for S1, S2,
S3, the Lotka-Volterra equation, and the Kepler problem are plotted
under data condition (20, 100) with R2 values. Points with the same
color share the same invariant values but are plotted at jittered values
for visualization. The mean output value of each group (black dot)
is shown with error bars for standard deviation and an identity line
(dotted) is drawn for comparison. (b) Result statistics for invariant
S2(20, 100) with ideal correlation 1 (green dashed line).

In a real scenario, there might be irrelevant variables in
an observed data set that do not compose the invariant. Fil-
tering out such nuisance variables is crucial for data-driven

FIG. 3. Robustness of ConservNet (CN). (a) Pearson correla-
tion of ConservNet and SNN for invariant S2 with various noise
strengths. (b) Pearson correlation of ConservNet and SNN for two
original data sets (S2 and Kepler) and their reinforced versions (S2+
and Kepler+) that include nuisance variables not appearing in the
invariants.
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FIG. 4. ConservNet results for real double-pendulum data. (a) Model output Fθ (x) and the noisy model output Fθ (x + ε) with ε = (ε1, ε2)
(top) and double-pendulum trajectories θ1, θ2 and noisy trajectories (bottom) versus time. Data in the shaded area are used for training (from
0 s to 6.54 s), with the remaining data used for testing (6.54 s to 8.18 s). (b) 2D heatmap of model output Fθ (left) and ideal Hamiltonian
(right) for (θ1, θ2, ω1, ω2) = (0, 0, ω1, ω2) (top) and (θ1, θ2, ω1, ω2) = (θ1, θ2, 5, 10) (bottom). The training data points are scattered in the
left panels, while the ideal formulas for the cross section are presented in the right panels. Here the ideal heatmaps are drawn with constants
(a1, a2, a3, a4 = 1, 0.32, 0.82, −170.95) and (b1, b2, b3, b4 = 41, −124.13, −46, 82, 57), provided by [15].

discovery without any prior knowledge. We test our model
with two reinforced data sets. First, we concatenate one extra
variable x4 ∼ N (0, 1) to the S2 data set to construct S2+
with a noisy variable. Second, we transform the data of the
Kepler problem from Cartesian coordinates (x, ẋ, y, ẏ) into
polar coordinates (r, ṙ, θ, θ̇ ) to construct Kepler+. In the polar
coordinates, θ becomes a cyclic coordinate and neither ṙ nor θ

appears in angular momentum rθ̇ , different from the original
Cartesian form xẏ − yẋ where all of the state variables appear.
As Fig. 3(b) shows, ConservNet exhibits robust performances
even with the existence of the nuisance variables and coor-
dinate transformation, while the SNN strongly overfits and
shows low performance when there are unused variables,
possibly due to the nature of classifiers and the absence of
a proper regularizer.

Finally, we apply our model to a real double-pendulum
trajectory from [15], which is a challenging task in a number
of ways. According to [15], the data do not strictly obey any
conservation laws due to noise and friction. Furthermore, the
model has to discover the invariant in an extreme data con-
dition where only a single trajectory (N = 1) with a limited
number of data points (M = 654) is available for training.
Note that the SNN is inapplicable to this case since it needs at
least two groups of data to compare (N � 2).

We train our model and examine its output for stability
and accuracy. Figure 4(a) shows that ConservNet output Fθ

remains constant for the training and test trajectory but not
for the noisy trajectory, verifying that ConservNet falls into
neither trivial convergence nor overfitting and properly cap-
tures the functional form of the invariant. We further check
two-dimensional cross sections of the model output by fix-
ing two variables and varying two variables and compare
them with the cross sections of the ideal four-dimensional
Hamiltonian, constructed with the constants from [15]. The
results are shown in Fig. 4(b). Considering inherent frictions
and the restricted regions of the data points, both heatmaps
are similar enough to the point where the inference of the
abstract functional form is possible. To summarize, Con-
servNet successfully captured the conserved quantity from a
real double-pendulum system with extreme data conditions.

VI. CONCLUSION AND OUTLOOK

In a real practice where the ground-truth invariant is un-
known, we may identify the symbolic form of the invariant
by sorting the output values and employing off-the-shelf
polynomial regression or symbolic regression algorithms. We
illustrate the result of such an application for invariant S1 as an
example in [28], in which the ground-truth symbolic formula
is successfully retrieved.

One limitation that ConservNet shares with [23] is that the
single model finds a single invariant even if the system could
have multiple invariants. While we showed that training with
modified data leads to the discovery of remaining invariants,
such modification is usually difficult for experimental data.
Since our model identifies the numerical value of the invariant
and [24] approximates the number of invariants, unifying the
advantages of these approaches would be an interesting future
direction to explore.

Also, ConservNet and all other attempts to solve the re-
gression problem with neural networks are not free from
extrapolation problems inherent to neural networks [37],
as shown in the incomplete reconstruction of heatmap in
Fig. 4(b). However, we note that the usual concern about
this issue, generalization for unseen test data, does not com-
pletely hold to our model’s main purpose. ConservNet and
similar architecture for scientific discovery are mainly aimed
at discovering scientific concepts from a given set of data
rather than training on a specific datum and achieving good
performance on a test datum (although we present the result
from test data throughout this Letter, which demonstrates the
model’s intrapolation performance). Hence, if unseen data
are newly collected, one may add such a data group into a
cumulative data set and retrain ConservNet to fit the model
for a potentially broader range of parameters.

In this Letter the invariants in a classical sense, such
as a well-defined Hamiltonian, are mainly discussed. We
can further expand the scope of ConservNet, for instance,
by converting any nonautonomous system of x with mul-
tiple exogenous variables y1, y2, . . . , yn to a standard form
of f ( dx

dt , x, y1, y2, . . . , yn) = 0, a system with an invariant

L042035-4



DISCOVERING INVARIANTS VIA MACHINE LEARNING PHYSICAL REVIEW RESEARCH 3, L042035 (2021)

of value zero [38]. From this perspective, one can identify
interactions among variables by discovering invariants with
the proposed model. This opens a wide variety of poten-
tial applications of the model in academic disciplines where
the underlying dynamics are yet to be discovered, including
advanced domains of quantum mechanics [39,40], high-
energy physics [41], astronomical science [42], and particle
physics [43], where the scale of the data set is exceedingly
large such that finding any meaningful structure is humanly
intractable.

Automation of science with deep learning is a recently
emerging field of study with plenty of uncharted research
areas. The present work builds an interpretable connection

between the data and scientists by extracting significant in-
formation from entangled high-dimensional data as a form of
numerical value and symbolic equation, which can be further
explained by a physicist. We envision that at some point, a
neural network such as ConservNet or an integrated frame-
work of such networks would automatically discover truly
unseen knowledge from large-scale data sets.
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