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ABSTRACT

Dynamical systems with interacting agents are universal in nature, commonly
modeled by a graph of relationships between their constituents. Recently, various
works have been presented to tackle the problem of inferring those relationships
from the system trajectories via deep neural networks, but most of the studies
assume binary or discrete types of interactions for simplicity. In the real world,
the interaction kernels often involve continuous interaction strengths, which can-
not be accurately approximated by discrete relations. In this work, we propose
the relational attentive inference network (RAIN) to infer continuously weighted
interaction graphs without any ground-truth interaction strengths. Our model em-
ploys a novel pairwise attention (PA) mechanism to refine the trajectory represen-
tations and a graph transformer to extract heterogeneous interaction weights for
each pair of agents. We show that our RAIN model with the PA mechanism ac-
curately infers continuous interaction strengths for simulated physical systems in
an unsupervised manner. Further, RAIN with PA successfully predicts trajectories
from motion capture data with an interpretable interaction graph, demonstrating
the virtue of modeling unknown dynamics with continuous weights.

1 INTRODUCTION

Dynamical systems with interactions provide a fundamental model for a myriad of academic fields,
yet finding out the form and strength of interactions remains an open problem due to its inherent
degeneracy and complexity. Although it is crucial to identify the interaction graph of a complex
system for understanding its dynamics, disentangling individual interactions from trajectory data
without any ground-truth labels is a notoriously hard inverse problem. Further, if the interactions
are heterogeneous and coupled with continuous strength constants, the interaction graph is called
weighted and the inference became much harder with increased level of degeneracies.

In this work, we assume the dynamical system withN objects (or agents), and their (discretized) tra-
jectories x1, x2, . . . ,xN from timestep t = 0 to T are given. If the system has an interaction kernel
Q(xi,xj) and the dynamics are governed by a form of ẋi =

∑
j 6=i kijQ(xi,xj) with some variable

kij , which is prevalent in nature and physical system, we call kij as an interaction strength between
the object i and j. With proper normalization, we can always regard 0 ≤ kij ≤ 1. In general, kij
may have continuous values and forms a weighted interaction graph, which can be expressed in the
form of a connectivity matrix K; a conventional adjacency matrix with continuous-valued entries of
kij . Hence, the problem is inferring continuous adjacency matrix K from trajectories x alone.

In the current work, we propose a neural network called Relational Attentive Inference Network
(RAIN) to address the problem of inferring weighted interaction graphs from multivariate trajec-
tory data in an unsupervised manner. RAIN infers the interaction strength between two agents from
previous trajectories by learning the attentive weight while simultaneously learning the unknown
dynamics of the system and thus is able to precisely predict the future trajectories. Our model em-
ploys the attention mechanism twice: once for the construction of pairwise trajectory embedding
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Figure 1: Overview of system formulation and RAIN architecture. RAIN encodes each agent’s
trajectory with an LSTM encoder and applies pairwise attention (PA) to the hidden states for con-
structing a pair of embeddings for each agent pair. Then the graph attentive module extracts the
interaction strength from a pair of embeddings in the form of an attention weight with an MLP, Aθ.
The decoder module finally predicts the future trajectories of each agent with an LSTM decoder, but
here, each prediction can only employ the weighted information from other agents. This restriction
on information induces the attention weights in the learning process to properly reflect the strengths
of the connections.

and once for the actual graph weight extraction. Differing from previous approaches such as the
graph attention network (GAT) Veličković et al. (2017), RAIN aims to infer the absolute interaction
strength that governs the system dynamics by employing attention module with multilayer percep-
tron (MLP) and sigmoid activation. By comparing the inferred interaction strengths of simulated
physical systems with ground-truth values that are not provided at the training stage, we verify that
RAIN is capable of inferring both system dynamics and weighted interaction graphs solely from
multivariate data. We further show that RAIN outperforms discrete baselines on real-world motion
capture data, representing a system in which we cannot be certain whether a continuous form of
interaction strengths even exists. In this way, we demonstrate that the rich flexibility and express-
ibility of the continuous modeling of interaction strengths are crucial for the accurate prediction of
the future dynamics of an unknown empirical system.

2 RELATED STUDIES

There has been a long history and substantial amount of work on both inferring the network topology
and the nonlinear correlation between interacting constituents from data Casadiego et al. (2017);
Ching & Tam (2017); Chang et al. (2018); Shi et al. (2020); Ha & Jeong (2021); Fujii et al. (2021),
along with the development of various measures to capture the relation between constituents (e.g.,
Pearson correlations, mutual information, transfer entropy, Granger causality, and variants thereof
Schreiber (2000)). Many of these inferences focus on specific systems with the necessity for a model
prior, such as domain knowledge of the agent characteristics, proper basis construction, and detailed
assumptions on the system dynamics.

Recently, by phenomenal advances in machine learning, adopting a neural network as a key compo-
nent of the interaction inference has gained attention from researchers Veličković et al. (2017); Kipf
et al. (2018); Zhang et al. (2019). The key strength of these approaches comes from the fact that a
neural network enables relatively free-form modeling of the system. One influential work in this di-
rection, neural relational inference (NRI) Kipf et al. (2018), explicitly infers edges by predicting the
future trajectories of the given system. But previous studies for extracting interaction graphs with
neural networks Kipf et al. (2018); Webb et al. (2019); Graber & Schwing (2020) mainly focused
on inferring edges with discrete edge types, which means that they are incapable of distinguishing
the edges of different interaction strengths with the same type. Considering the common occurrence
of such heterogeneous interaction strengths throughout diverse systems, the assumption of discrete
edge types severely limits the expressibility of the model.
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Figure 2: Overview of the PA mechanism, which facilitates effective interaction inference by em-
phasizing the critical part of the time series. Here, two balls weakly interacted at first but showed
strong interaction at the end. The circled points at timestep 2 and 49 are emphasized as exemplary
timestep where the interaction was weak and strong, respectively. PA achieves refined trajectory
representations by comparing encoded LSTM hidden states at the same time. Due to the asymmet-
ric nature of the transformer architecture, the weighted hidden state for A to B and B to A can be
drastically different, which lets PA properly handle the directional asymmetry of interaction.

One recent study Li et al. (2022) tackles this problem of inferring the connectivity matrix by first
training the neural network and then additionally applying a ‘graph translator’ to extract continuous
graph properties, which needs a ground-truth label to train. Several studies from physicists Zhang
et al. (2015); Lai (2017) employed perturbation analysis and response dynamics to infer continuous
interaction strengths. However, these correlation-based methods usually require more than 105 to
107 data points for the inference, which is a feasible size for an entire dataset but not for a single
instance, and thus the direct application to experimental data is difficult.

Also, many of the recent studies in relational inference Li et al. (2020; 2021); Sun et al. (2022)
and trajectory prediction Xu et al. (2022b); Mo et al. (2022); Xu et al. (2022a) explicitly model the
relationship between objects as a continuous value. But, for interaction inference, all these models
rely on the traditional Graph Attention (GAT) Veličković et al. (2017) or slightly modified version
of it, which becomes a limitation for challenging inference problem. Further, most of these works
are not focusing on correctly infer the true interaction strength, hence only tested on the system with
unknown ground-truth interaction strength or didn’t report any comparison with it. In this work,
we show that even the advanced and strictly more expressive version of GAT, GATv2 Brody et al.
(2021) is insufficient to fully capture the true interaction strength.

3 MODEL DESCRIPTION

Our RAIN model as shown in Fig. 1 comprises three parts trained jointly: an encoder that com-
presses time series data, a graph extraction module that infers the interaction weight between every
pair of agents, and a decoder that predicts the future trajectories of each agent. Note that RAIN does
not require a ground-truth interaction graph for training; instead, it produces an interaction graph as
a byproduct of future trajectory prediction. In the following, we formalize our model and describe
each component in detail.

3.1 ENCODER AND PAIRWISE ATTENTION

The long short-term memory (LSTM) encoder is composed of a single layer of gated recurrent
unit (GRU) Cho et al. (2014) with hidden state dimension dlstm = 128. The encoder repeatedly
takes the trajectory data of all agents from each timestep by receiving Tenc steps of trajectories
x1, x2, . . . , xTenc , each consisting of R state variables of N agents at time T , and producing corre-
sponding Tenc hidden states, h1,h2, . . . ,hTenc . The last hidden state hTenc could preserve the infor-
mation from the entire trajectory of all agents in theory. But we found that a naive final hidden
state is insufficient to fully capture the interaction strength in large-scale systems. In this study, we
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Figure 3: Visualization of the trajectory predictions (upper) and retrieved connectivity matrices
(lower) for the spring-ball system. The results from left to right are from NRI(2), RAIN without
PA, RAIN with PA, and ground-truth. Here, 5 out of 10 balls are drawn for trajectory visualization,
and semi-transparent paths indicate the first 50 steps of input trajectories while solid paths denote
50 steps of predicted future trajectories.

propose a pairwise attention (PA) mechanism to effectively infer the interaction strength between
two trajectories. The intuition behind PA is straightforward: a single hidden state cannot be a suit-
able choice for extracting the interaction strengths from every possible pair. Thus, we calculate the
attention between same-time hidden states to assign weights to their contribution, as depicted in Fig.
2. Here, the term ‘same-time’ in PA indicates that the attention values are calculated between hti
and htj (Kt

pair,i and Qtpair,j , technically) only for same time t, not between every possible t = 0 T , as
conventional full attention mechanism does. We use a slightly modified transformer Vaswani et al.
(2017) with m = 4 heads and a head dimension of dh = dlstm/m=32 to emphasize strong interaction.
See Vaswani et al. (2017) for a detailed description of the transformer architecture. Formally, the
LSTM hidden states are processed into Key(K), Query(Q), and Value(V ) matrices as follows,

hti = fLSTM(ht−1i ,xti) (1)

Xt
pair,i = fpair,X(hti) where X ∈ {K,Q, V } (2)

Xt
pair,i = Xt,1

pair,i ⊕X
t,2
pair,i ⊕ . . .⊕X

t,m
pair,i, (3)

where the symbol ⊕ indicates the concatenation of the matrices at the last dimension, fLSTM is
the GRU layer, xti are the state variables of the ith agent at time t, and fpair,X is a stack of MLP
layers for Kpair, Qpair, and Vpair. The superscripts t and m on X indicate the time and head number,
respectively. The attention-weighted hidden state h̃ is expressed as follows,

αt,mpair,ij = softmax(Kt,m
pair,i(Q

t,m
pair,j)

T /
√
dh) (4)

h̃mi =

Tenc∑
t=1

αt,mpair,ijV
t,m
j (5)

h̃i = h̃1
i ⊕ h̃2

i ⊕ . . .⊕ h̃mi , (6)

where αt,mpair,ij is an attentive weight between agents i and j, and h̃mi is a weighted hidden state for
the mth attention head. RAIN passes h̃ to the graph extraction module.

By employing the PA mechanism, we can refine the LSTM hidden states by focusing on the specific
time of interaction, which is unique to each agent pair. We highlight that comparing the same-time
hidden states only, rather than considering the full attention as in conventional settings, significantly
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Figure 4: Visualization of the trajectory predictions (upper) and retrieved connectivity matrices
(lower) for coupled Kuramoto oscillators. The results from left to right are from NRI(2), RAIN
without PA, RAIN with PA, and ground-truth. Here, 5 out of 10 oscillators are drawn for trajectory
(dφi

dt ) visualization, and semi-transparent paths indicate the first 50 steps of input trajectories while
solid paths denote 50 steps of predicted future trajectories.

reduces the time complexity of the inference while achieving the goal of the extraction of temporal
information. Also, since the transformer can handle asymmetric relationships by differentiating key
and query, PA can capture directional connections with ease.

3.2 GRAPH EXTRACTION MODULE

The outline of the graph extraction module of RAIN is similar to the GAT Veličković et al. (2017).
The difference between ours and the original GAT is that RAIN has no prior knowledge of the
underlying graph and thus the αgraph attention value should infer the presence of the edge itself as
well as its strength, while GAT aims to find the relative importance between fixed graph edges.
Also, the conventional inner-product attention of GAT is replaced with a 3-layer MLP Aθ in RAIN
to achieve much more flexible representations. We use attention-weighted hidden states from the PA
mechanism to apply the transformer as αgraph,ij = σ(Aθ(h̃i ⊕ h̃i)). Note that instead of softmax
which normalizes the attention weight, sigmoid activation σ is used for graph attention to obtain the
absolute interaction strength. This is because our main goal is to infer the ground-truth interaction
strength, not the relative strength for a single instance. Extracted graph attention αgraph,ij becomes
a weight for the decoder module.

3.3 DECODER

The decoder shares the same GRU layer with the encoder module and the employ new value func-
tion, Vdec,i, for the message aggregation. For agent i, RAIN concatenates attention-weighted value
vectors from other agents along with its own value vector as follows,

hTenc+t
i = fLSTM(hTenc+t−1

i ,xTenc+t
i ) (7)

V Tenc+t
dec,i = fpair,V (h

Tenc+t
i ) (8)

h̃Tenc+t
dec,i =

∑
j 6=i

αgraphV
Tenc+t

dec,j ⊕ V Tenc+t
dec,i , (9)

where fLSTM and fpair,V consists of MLP. RAIN finally produces a prediction of the state variables of
the next step using another stack of MLP layers fdec, fµ, and fσ by first hTenc+t

dec = fdec(h̃
Tenc+t
dec,i ), and
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then µTenc+t
i = fµ(h

Tenc+t
dec ) and σTenc+t

i = fσ(h
Tenc+t
dec ).The outputs of fµ and fσ are r-dimensional

vectors, each representing the means and variances of the difference of state variables. RAIN sam-
ples the next state from a Gaussian distribution with fµ and fσ and adds the values to the previous
state. The decoder iterates this for Tdec steps to predict the future states. For training, we employ
negative log-likelihood (NLL) loss for a Gaussian distribution.

4 EXPERIMENTS

We demonstrate the capability of RAIN by performing inference tasks with various model systems
ranging from simulated physical systems to real motion capture data from a walking human. All
of the models and baselines are implemented with PyTorch and optimized with Adam Kingma
& Ba (2014). Data and models are available at github.com/nokpil/RAIN. See the Supplementary
Materials for details on the data generation, model architectures, and training details.

4.1 PHYSICAL SIMULATIONS

We simulated the trajectories of two physical systems: a spring-ball system and phase-coupled Ku-
ramoto oscillators Kuramoto (1975). Unlike previous studies Kipf et al. (2018); Webb et al. (2019)
in which every interaction strength w in the system is discrete and constant (commonly w = 1),
we consider a more general setting where interaction strengths are drawn from a continuum and
are thus heterogeneous. Assuming that two agents i and j are interacting, the interaction strength
for each system would be a spring constant kij for a spring-ball system and a coupling weight wij
for a Kuramoto model. Although our model can handle asymmetric interaction strength—thanks
to the asymmetric nature of the transformer—we take the symmetric form of connectivity matrix
kij = kji for the simulated systems. For the spring-ball and Kuramoto systems, we first select the
edges between n nodes with probability p (excluding self-connections) to construct an interaction
graph, and then assign a randomly sampled interaction strength to each edge from a uniform distri-
bution U [0, 1] while expressing non-assigned edges with zero interaction strength. We generate 10k
training samples and 2k validation samples for all simulated tasks. The state variables consisting of
trajectories are x, y, vx, vy (positions and velocities) for the spring-ball system. For the Kuramoto
oscillators, a concatenated vector of dφ

dt , sinφ, and intrinsic frequency ω are used to construct the
trajectories, where φ is the phase of an oscillator.

For evaluation, we measure how accurately the model predicts future trajectories by mean squared
error (MSE) and how well the model retrieves the original connectivity matrix by two forms of
Pearson correlation. We first gather every retrieved interaction strength a and corresponding true
interaction strength k from all 2k validation samples and calculate the correlation in total (ρtot).
Secondly, we independently calculate the correlation for each validation sample and take the average
of the 2k samples (ρsample). One may interpret ρtot as the overall performance of the model, while
ρsample indicates the expected correlation for a single instance at a test time. We excluded diagonal
trivial zeroes (due to no self-loop interaction) while calculating correlation, so the reported value is
strictly lower compared to the case where every value in the connectivity matrix is used. Correlations
from the baseline models with discrete edge types are obtained by assigning continuous weights to
each edge type according to every possible permutation and choosing the best one. More precisely,
we assign n weights of 0, 1

n−1 ,
2

n−1 , . . . , 1 to n edge types with n! different assignments and report
the highest correlation.

4.1.1 RESULTS

Table 1 shows the correlations between the true interaction graph and the predicted interaction
strengths from various models. Following Kipf et al. (2018), we measure the correlation between
trajectory feature vectors as Corr. (Path) and the correlation between trained LSTM feature vectors
as Corr. (LSTM). NRI(2) and NRI(4) indicate the NRI from Kipf et al. (2018) with 2 and 4 edges
types, respectively. As a baseline with continuous attention, we employ GATv2 Brody et al. (2021),
which is an advanced version of GAT and analytically proven to be strictly more expressive than
the original GAT. We check the effect of PA by testing the RAIN model both with and without the
PA mechanism. In Table 1, we can clearly see that RAIN with PA significantly outperforms ev-
ery other model at inferring interaction strengths. Here, GATv2 showed worse performance in the
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Table 1: Total Pearson correlation (ρtot) and the sample Pearson correlation (ρsample) between re-
trieved interaction weights and true interaction weights for simulations with 5 and 10 interacting
objects.

Model Spring Kuramoto Spring Kuramoto

Corr. ρtot ρsample ρtot ρsample ρtot ρsample ρtot ρsample

5 objects 10 objects

Corr. (Path) 0.2917 0.2944 0.0243 -0.1206 0.2654 0.2732 0.1047 0.0682
Corr. (LSTM) 0.0979 0.0952 -0.1369 -0.0751 0.1196 0.1096 0.0024 -0.0012
NRI(2) 0.8482 0.8660 0.0027 -0.0048 0.8602 0.8593 0.0393 0.0413
NRI(4) 0.9250 0.9214 0.0230 0.0192 0.8921 0.8966 0.0438 0.0454
GATv2 0.8425 0.8643 0.6296 0.6466 0.7981 0.8060 0.5410 0.5481
RAIN 0.8411 0.8770 0.5213 0.4987 0.7787 0.8164 0.4560 0.4683
RAIN + PA 0.9400 0.9568 0.8731 0.8925 0.9117 0.9221 0.8265 0.8411

Table 2: Mean squared error (MSE) in predicting future states for simulations with 5 and 10 inter-
acting objects. Underlined entries show better results than those from RAIN with PA.

Model Spring Kuramoto

Prediction steps 10 30 50 10 30 50

5 objects

Static 0.6665 1.3614 1.2340 1.0671 0.9901 1.0108
SingleLSTM 0.1969 0.5643 0.6048 0.5006 0.4957 0.5247
JointLSTM 0.0704 0.3913 0.6362 0.0391 0.1083 0.1749
NRI(2) 0.0171 0.2232 0.5263 0.0268 0.1615 0.3275
NRI(4) 0.0122 0.1395 0.3573 0.0308 0.1498 0.3050
GATv2 0.0230 0.2081 0.4252 0.0455 0.1901 0.3140
RAIN 0.0259 0.1322 0.3113 0.0388 0.1705 0.3675
RAIN + PA 0.0084 0.0714 0.2193 0.0041 0.0645 0.2059
RAIN (true graph) 0.0062 0.0181 0.0732 0.0037 0.0068 0.0122

10 objects

Static 0.6070 1.1253 1.0779 1.0380 0.9935 0.9799
SingleLSTM 0.2028 0.4991 0.5189 0.5511 0.5138 0.5173
JointLSTM 0.1317 0.4823 0.5840 0.0953 0.2490 0.3832
NRI(2) 0.0078 0.1158 0.3169 0.0392 0.2341 0.4451
NRI(4) 0.0061 0.0866 0.2440 0.0372 0.2411 0.4385
GATv2 0.1309 0.2634 0.4192 0.0354 0.1665 0.3766
RAIN 0.1665 0.3109 0.4996 0.0307 0.1902 0.3942
RAIN + PA 0.0069 0.0892 0.2351 0.0115 0.1586 0.4016
RAIN (true graph) 0.0059 0.0163 0.0504 0.0009 0.0063 0.0301

spring-ball system and better performance in Kuramoto oscillators compared to RAIN, but signifi-
cantly worse than RAIN with PA model in both cases. Also, note that the high correlations from the
NRI models for the spring-ball system can only be achieved if and only if we know the ground-truth
interaction strength and choose the best permutation. Considering the huge performance difference
between RAIN without and with PA, our model and PA mechanism are both crucial for accurate
interaction strength retrieval. We show MSE results for predicting 50 future states in Table 2, Here,
again following Kipf et al. (2018), SingleLSTM runs a single LSTM for each object separately,
while JointLSTM concatenates all state vectors (thus may handle a fixed number of agents only)
and trains a single LSTM to jointly predict all future states. See the Supplementary Materials for
further analysis, including full histograms of the correlation distributions.

Figures 3 and 4 show the results of future prediction and interaction strength inference for 10 inter-
acting agents, where 5 trajectories are drawn for visualization. In Fig. 3, we can observe that all
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(A) (B) (C) (D)

Figure 5: (A) Ground-truth connectivity matrix of the given multilayer network with a single inter-
layer link. Inferred interaction weights from (B) RAIN with PA and (C) NRI(2) are shown. (D)
Trajectory predictions (10 steps) for ball 3 on the xy-plane. The inset depicts a diagram of the given
multilayer networks, where the inter-layer link is highlighted with the red dotted line.

models, including NRI(2), succeed in capturing the existence of interaction between agents. But it
is apparent that the NRI(2) model fails to capture the interactions with small weights, while RAIN
without PA yields in numerous false positives with spurious weights. Such weakness of each model
is reflected in relatively large prediction errors compared to RAIN with PA, especially for ball 4
(green) and ball 5 (purple). The power of the PA mechanism becomes more evident with the Ku-
ramoto oscillators (Fig. 4), where only RAIN with PA succeeds in retrieving meaningful interaction
weights. To sum up, we can conclude that the PA mechanism clearly helps the refinement of hid-
den states and thus yields better results with a greater correlation with the ground-truth interaction
weights.

4.1.2 IMPACT OF WEAK INTERACTION

By inferring interaction with a continuous strength as RAIN does, we can capture an entire spectrum
of interactions with a single model. Particularly, we find that our model is able to detect weak
interactions that are often ignored by the discrete NRI models due to their limited capacity. In
Figure 5, we emphasize the significance of the inference of weak interaction by constructing the
connectivity matrix in a form of a multilayer network Kivelä et al. (2014) with 2 layers. Here,
we prepare two densely connected layers of springs where their spring constants are sampled from
[0.5, 1], uniformly. Between the two layers, we set a single inter-layer link (connecting ball 3 and
ball 8) with a spring constant of 0.3, which is much smaller than the intra-layer interaction weights.
Since the synchronization of a multilayer network largely depends on the strength and structure of
inter-layer coupling Leyva et al. (2017); Della Rossa et al. (2020), capturing this weak but significant
connection between the two layers is critical for trajectory prediction. As Fig. 5 shows, RAIN with
PA accurately captures this weak interaction, while NRI(2) misses it and thus its predicted trajectory
considerably deviates from the true one.

4.2 MOTION CAPTURE DATA

Next, we test our model in inferring interactions between the joints of a walking human data from the
CMU motion database cmu (2003). Different from the physical simulations, this real-world system
does not possess any well-known dynamics with a continuous interaction strength. Following Kipf
et al. (2018) and Graber & Schwing (2020), we use the data from subject #35 with 31 joints. We
split the training and validation data sets into a 4 : 1 ratio. We use the same protocol as with the
physical systems: provide 50 time steps of trajectories and let the model predict 50 unseen time
steps afterward. For the motion data, we use raw value of the future state instead of the difference
from the current state to calculate the Gaussian loss for fast convergence.

Figure 6A shows the errors from each model’s prediction, where RAIN with PA achieved the lowest
MSE. An example visualization of the prediction is shown in Fig. 6B. Without dynamically re-
evaluating the interaction graph at every time step as reported in Kipf et al. (2018) and Graber &
Schwing (2020), our model precisely predicts the future states from static but continuous interaction
weights. Also, as shown in Fig. 6C, our model produces a smooth and block-wise connectivity
matrix which is much easier to interpret compared to that from the discrete NRI(2). This is because
there is no restriction or natural meaning for each edge type in the discrete model, and thus the
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(A)

Frame 10

Frame 30 Frame 40

Frame 20

(B) (C)

Figure 6: (A) Validation MSE comparison for motion capture data. The prediction results of 50
time steps from SingleLSTM, JointLSTM, NRI(2), NRI(4), RAIN without PA, and RAIN with PA
are shown. (B) Sample predictions from NRI(2) (blue) and RAIN with PA (red) for a validation tra-
jectory of motion capture data with the ground-truth states (black). (C) Inferred interaction weights
from NRI(2) (top) and RAIN with PA (bottom) are shown. Here, the diagonal entries from NRI(2)
are marked with −1 to distinguish them from the two edge types, 0 and 1.

manual sparsity prior is needed to handle the ‘no interaction’ edges if an abundance is expected.
On the other hand, the attention value of RAIN is expected to convey the strength of interaction
directly. For instance, it is clear from RAIN’s connectivity matrix that the dynamics of the feet are
less correlated with the rest of the joints and also that the spine moves along with the right leg, arm,
and hand, both of which agree with the qualitative movements of a human while walking.

5 CONCLUSION

In this work, we introduced RAIN, a model for inferring continuous weighted interaction graphs
from trajectory data in an unsupervised manner. With the PA mechanism that computes the attention
between same-time LSTM hidden states between agents, we can sharply refine the representation for
the interaction weight extraction. Our model successfully inferred the absolute interaction weights
from simulated physical systems and further showed great prediction performance with an empirical
system, demonstrating the advantage of continuous weight modeling in relational learning. Notably,
RAIN needs only 50 time steps of data to infer the interaction weights, and thus requires less data
by several orders of magnitude than correlation-based theoretical methods Zhang et al. (2015); Lai
(2017).

Also, we found that the refinement of the LSTM hidden state with PA is critical for meaningful per-
formance. Since the PA mechanism is generally applicable to a neural model where its trajectory is
represented by a recurrent neural network, one may expect an increase in performance by employing
PA in other relational models without increasing the inference time significantly. If the system size
N is extremely large andO(N2) time complexity of the attention mechanism becomes a bottleneck,
one may adopt recently proposed attention mechanisms with linear time complexity and virtually no
performance drop Wang et al. (2020); Shen et al. (2021) to calculate PA.

In the real world, interactions between agents in complex systems possess a broad range of charac-
teristics. For instance, they can be either positive (excitatory or encouraging) or negative (inhibitory
or suppressing), time-delayed with heterogeneous time scales, and noisy both inherently and exter-
nally. Complex systems in nature generally contain every aspect of these characteristics, such as
neural signals in a human brain. Reinforcing the current RAIN architecture to handle data of such
complex nature with a single model would be a promising future direction to explore.

6 DATA AVAILABILITY

All of the codes for data generations and models are available at github.com/nokpil/RAIN.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Fabio Della Rossa, Louis Pecora, Karen Blaha, Afroza Shirin, Isaac Klickstein, and Francesco Sor-
rentino. Symmetries and cluster synchronization in multilayer networks. Nature Communications,
11(1):1–17, 2020.

Keisuke Fujii, Naoya Takeishi, Kazushi Tsutsui, Emyo Fujioka, Nozomi Nishiumi, Ryoya Tanaka,
Mika Fukushiro, Kaoru Ide, Hiroyoshi Kohno, Ken Yoda, et al. Learning interaction rules from
multi-animal trajectories via augmented behavioral models. Advances in Neural Information
Processing Systems, 34:11108–11122, 2021.

Colin Graber and Alexander Schwing. Dynamic neural relational inference for forecasting trajecto-
ries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1018–1019, 2020.

Seungwoong Ha and Hawoong Jeong. Unraveling hidden interactions in complex systems with deep
learning. Scientific Reports, 11(1):1–13, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.
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for multi-interaction systems. arXiv preprint arXiv:1905.08721, 2019.

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale hyper-
graph neural networks for trajectory prediction with relational reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6507, 2022a.

Yi Xu, Lichen Wang, Yizhou Wang, and Yun Fu. Adaptive trajectory prediction via transferable
gnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6520–6531, 2022b.

Zhang Zhang, Yi Zhao, Jing Liu, Shuo Wang, Ruyi Tao, Ruyue Xin, and Jiang Zhang. A general
deep learning framework for network reconstruction and dynamics learning. Applied Network
Science, 4(1):1–17, 2019.

Zhaoyang Zhang, Zhigang Zheng, Haijing Niu, Yuanyuan Mi, Si Wu, and Gang Hu. Solving the
inverse problem of noise-driven dynamic networks. Physical Review E, 91(1):012814, 2015.

11


	Introduction
	Related studies
	Model description
	Encoder and pairwise attention
	Graph extraction module
	Decoder

	Experiments
	Physical simulations
	Results
	Impact of weak interaction

	Motion capture data

	Conclusion
	Data availability
	Acknowledgement

