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Abstract

How have individuals of social animals in nature
evolved to learn from each other, and what would
be the optimal strategy for such learning in a spe-
cific environment? Here, we address both prob-
lems by employing a deep reinforcement learn-
ing model to optimize the social learning strate-
gies (SLSs) of agents in a cooperative game in
a multi-dimensional landscape. Throughout the
training for maximizing the overall payoff, we
find that the agent spontaneously learns various
concepts of social learning, such as copying, fo-
cusing on frequent and well-performing neigh-
bors, self-comparison, long-term cooperation be-
tween agents, and the importance of balancing
between individual and social learning, without
any explicit guidance or prior knowledge about
the system. The SLS from a fully trained agent
outperforms all of the traditional, baseline SLSs
in terms of mean payoff. We demonstrate the su-
perior performance of the reinforcement learning
agent in various environments, including tempo-
rally changing environments and real social net-
works, which also verifies the adaptability of our
framework to different social settings.

1. Introduction
Learning is one of the most salient properties that emerge
from flourishing species in nature. Particularly, learning
from other members in a group generally leads to a collec-
tive success by exploiting verified information (Feldman &
Cavalli-Sforza, 1984; Feldman et al., 1996; Kendal et al.,
2018), which distinguishes social learning from asocial, in-

*Equal contribution 1Department of Physics, Korea Advanced
Institute of Science and Technology, Daejeon 34141, South Ko-
rea 2Center for Complex Systems, Korea Advanced Institute of
Science and Technology, Daejeon 34141, South Korea. Correspon-
dence to: Hawoong Jeong <hjeong@kaist.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

dividual learning where information directly comes from
exploration through the environment. While social learning
is intuitively beneficial at first sight, research over the past
several decades has consistently proven that naive social im-
itation is not inherently adaptive and often fails to achieve
good group-level performance (Boyd & Richerson, 1988;
Laland, 2004; Hashimoto et al., 2010; Rendell et al., 2011;
Mason & Watts, 2012; Barkoczi & Galesic, 2016; Todd
et al., 2020). Instead, current theory suggests that, to prop-
erly determine how to learn from others one should employ
a selective heuristics called a social learning strategy (SLS)
(Laland, 2004), which governs the internal rules for choos-
ing the proper time, subject, and methods to engage both
social and individual learning. SLSs significantly contribute
to building social norms and driving cultural evolution in
society, and thus the understanding of SLSs provides fruitful
insight to policymakers and group leaders (Toyokawa et al.,
2019; Almaatouq et al., 2020). Throughout the history of
research into SLSs, two fundamental questions have yet
to be fully answered: how it naturally emerged for social
beings in nature, and what is the optimal strategy for the
given environment.

In this work, we employ a modern computational model
to tackle both of the central questions—namely, regarding
the natural emergence of social learning and finding the
optimal strategy. By constructing a reinforcement learning
(RL) framework with a neural network tailored to SLSs, we
train a model-free agent to search for the multi-dimensional
policy that yields the maximum average payoff during its
social evolution. We show that social learning in a coopera-
tive game can naturally emerge through RL from a simple
reward, without any selective pressure or explicit knowl-
edge of the information the agent receives from interactions.
The most intriguing point is that the agent progressively dis-
covers significant notions of social learning throughout the
training, including the concept of copying other solutions
based on their frequency or payoff, stochastic copying, indi-
vidual learning, self-comparison, and even the delicate inter-
play between exploration and exploitation, which yields a
long-term cooperation between agents in a non-greedy man-
ner. The optimized SLS from the trained agent outperforms
all of the baseline SLSs in various environmental settings,
including real social networks.
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Figure 1. (A) NK model on a social network. At every time step, each person randomly observes a certain number of people among their
neighbors and applies a social learning strategy (SLS) to maximize their individual time-average payoff. The solution is represented as an
N -dimensional binary vector, where its payoff is given by the NK landscape. (B) Available information and various mechanisms for
SLSs. The conventional strategies include frequently observed and proposed heuristics, such as best imitator and conformist strategies,
while we present a reinforcement learning approach to find the optimal SLS for the given environment. The agent tries to maximize
the time-average payoff it receives from the NK landscape as a result of its action of producing probabilities for a new solution. State
correction after the sampled solution is omitted for visualization.

2. Related studies
Many studies attribute the emergence and evolution of so-
cial learning to natural selection (Boyd & Richerson, 1988;
Laland, 2004; Macy, 1996; Perreault et al., 2012), while
mostly explaining the origin of social learning in a retro-
spective manner. Some evidence has shown that reinforce-
ment learning could lead to the emergence of social learning
(Dawson et al., 2013; Lindström & Olsson, 2015), but a gen-
eral framework for inducing complex SLSs is still lacking.
On the other hand, numerous attempts to search for the best
SLS have faced another set of problems. Previous studies
mainly focused on performing a comparison or organizing
a tournament between a given set of heuristics (Rendell
et al., 2010; Csaszar & Siggelkow, 2010; Mason & Watts,
2012; Fontanari, 2015; Barkoczi & Galesic, 2016; Barkoczi
et al., 2016), which have been either reported from empirical
societies or proposed by insights from social observations
without a rigorous theoretical basis or optimization scheme.
Although a number of computational models and theoretical
approaches attempted to formalize the long-term behavior
of SLSs (Aoki et al., 2005; Lopes et al., 2009; Aoki, 2010;
Giraldeau & Caraco, 2018), optimizing general SLSs even
in a simple environment is an extremely challenging task
due to the inherent multifaceted complexity, such as from an
exponentially large search space, dependence on interaction
networks, non-differentiable payoff, and stochasticity.

To search heuristics systematically without brute force,
metaheuristics such as genetic algorithms (Sivanandam &
Deepa, 2008) and simulated annealing (Van Laarhoven &

Aarts, 1987) are widely used. Recently, fueled by the rapid
advances in machine learning, many researchers have started
to employ RL to seek heuristics (Runarsson, 2011; Bianchi
et al., 2015; Fiderer et al., 2021; Yonetani et al., 2021; Ya-
man et al., 2021). In particular, RL has shown its strength
in constructing computational models of the spatiotemporal
dynamics of human cooperation and anthropological prob-
lems (Vinitsky et al., 2021; Ndousse et al., 2021; McKee
et al., 2021; Köster et al., 2022). In this paper, we aim to
adopt the similar spirit to these and employ the full poten-
tial of RL framework to find the optimal SLS in the given
settings.

3. Methods
Here, we model the problem of social learning by consider-
ing a group of individuals that iteratively search for better
solutions in a rugged, high-dimensional landscape (Csaszar
& Siggelkow, 2010; Hashimoto et al., 2010; Fontanari, 2015;
Barkoczi & Galesic, 2016; Giannoccaro et al., 2018; Todd
et al., 2020), where our goal is to find the optimal heuris-
tic for individuals that yields the maximum average payoff
when shared with its group (Fig. 1A). In this paper, the
rugged landscape takes the form of an NK model (Kauff-
man & Levin, 1987), see Appendix for further details.

We formulate SLSs as intrinsic algorithms for an individual
in a group who receives information from their neighbors
and yields the probability of their future solution for every
time step. The collective information comprises solutions
and payoffs as well as additional features such as rankings
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Figure 2. (A) BI test template solution vectors and representative strategies for the face colors of the voxels. (B) Three-dimensional
(3D) strategy diagram (left) and two-dimensional (2D) output diagram (right) for the BI test. The model results from the test template
with score p1 ≤ p2 ≤ p3 are shown. In the 3D diagram, each voxel’s location represents its neighbor’s score (p1, p2, p3) and its face
color indicates the distances between the output probability and identified strategies. The 2D output diagram directly shows the output
probability of producing 1 for each N dimension. For visualization, in what follows, the voxels in the 3D strategy diagrams are drawn by
taking every 5th coordinate value in each dimension. (C) CF test template solution vectors and representative strategies (left) and 2D
output diagram (right) employing the test template with p1 ≤ p2 = p3 to accuratley detect the true CF strategy.

and frequencies, but these are provided without any indica-
tion; the agent is initially clueless about which part of the
information is a payoff or solution. This stochastic formula-
tion can encompass both social learning and individual learn-
ing in a unified framework in multi-dimensional settings
(Fig. 1B). One notable point is that the algorithms should
be invariant to permutations of the neighbors’ information,
since generally there is no specific order of neighbors. We
designed the neural architecture to properly handle this char-
acteristic by adopting a permutation-invariant encoder for
the policy network (see Appendix for further details).

As a baseline, we consider the following strategies from pre-
vious literature (Laland, 2004; Barkoczi & Galesic, 2016;
Barkoczi et al., 2016). Best imitator (BI) always copies the
solution of the best-performing neighbor, conformist (CF)
always copies the most frequent (or major) solution among
the neighbors, random imitator (RI) chooses random neigh-
bors to copy, and pure individualist (PI) does not engage
in any form of social learning (Fig. 1B). For SLSs with
individual learning, single-bit flipping (-I), probabilistic flip-
ping (-P), or random flipping (-R) are applied to the current
solution (see Appendix for further details).

Since the strategies are formulated as high-dimensional func-
tions, understanding and visualizing the functional meaning
of a trained neural network is not a simple task. Here, sim-
ilar to controlled experiments in psychology, we inspect
the strategy of the trained RL agent by isolating it from
the network and observe the solution yielded by the policy
network using a given test template. We test the similar-
ity of the given model output to two representative SLSs,
i.e., BI and CF strategies. The BI test template (Fig. 2A)
consists of a series of fixed solution vectors and tunable
payoffs, 0 ≤ p0 ≤ pmax = 100 for the learner itself and

0 ≤ p3 ≤ p2 ≤ p1 ≤ pmax for the neighbors in decreasing
order of payoff. Since the proper heuristics should only de-
pend on the payoff and not on the form of the solution vector
itself, we can investigate the nature of the SLSs by changing
the payoffs (p0, p1, p2, p3) and observing the output proba-
bilities. For instance, we can expect that the BI-I strategy
will imitate the solution of p1 if p1 > p0 and perform indi-
vidual learning otherwise, regardless of p2 and p3. The CF
test template (Fig. 2C) is constructed in a similar manner,
but in this case, two of the solutions are the same with a
low payoff (p1 ≤ p2 = p3) to precisely discern whether the
agent follows the major solution even if it is worse than the
other solution. For both tests, we draw a two-dimensional
(2D) output diagram from (p0, 0, 0, 0) to (p0, 100, 100, 100)
that satisfies the respective payoff conditions (176, 581 pairs
for the BI test and 5, 050 pairs for the CF test).

For visualization, in Fig. 2B we depict the response of these
SLSs as a three-dimensional (3D) voxel plot for a fixed
p0, where each voxel is located at (p3, p2, p1) with a face
color (r, g, b, a). Each RGB color component represents
the distance between the given strategy and the specific
solution, as visualized in Fig. 2A, and the opacity a depends
on the minimum distances among all of the solutions (see
Appendix for details). With this color scheme, the voxel
shows PI-R as light gray (low opacity, hence not close to
any of the given solutions), PI-I as translucent red (close
to the self solution but with some randomness), and BI
as vivid blue (identical to the best solution). This type of
3D strategy diagram, along with the 2D output diagram,
enables us to investigate the qualitative characteristics of the
agent’s multi-dimensional strategy that could not be easily
comprehended otherwise.
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Figure 3. (A) Mean payoff and (B) average mean payoff over time of the SLS from reinforcement learning (RL) and various baseline SLSs
(BI, BI-I, BI-P, BI-R, CF, CF-I, CF-P, CF-R, PI-I, PI-P, PI-R, RI). Here, the RL agent (83.03) surpasses the best-performing baseline,
BI-R (77.54), as indicated with the dotted line in (B). Error bars show ±5 standard error of the mean. (C) Average mean payoff and
entropy of the model output during 5, 700 training epochs. The bold lines show the exponential moving average with a smoothing factor
of 0.99. (D) 3D strategy diagrams and 2D output diagrams for the BI test and the CF test from the model with training epochs of 1, 000,
2, 000, 3, 000, and 4, 500, each representing 4 distinct stages of learning dynamics. Below the plots, we draw conceptual diagrams of the
important lessons that the agent learned as the agent passes through to the next stage. The model is trained on a fully connected network
of 100 agents with NK(15, 7) environments.

4. Results
4.1. Default environment

In each epoch of the model training, 100 agents with ran-
domly assigned initial states perform the same SLS with 3
randomly selected neighbors for L = 200 time steps, and
the reward for each agent is given as the payoff from the
environment according to each individual’s new state. Even
though this effectively trains a single model with a group of
self-copied agents, we grant rewards individually, and thus
the model is optimized to maximize the expected payoff of
each individual agent. Accordingly, from each individual’s
perspective, the solutions of all other agents and payoffs
are regarded as surroundings, not a subject of optimization.
We find that the model significantly struggles when a group-
averaged reward is provided instead of an individual reward
(see Supplementary Information for the result).

We set our default environment as NK(15, 7) on the fully
connected network, a similar setting as (Barkoczi & Galesic,

2016), and train the agent by providing a new random land-
scape every epoch. This learning scheme is critical for
guiding the agent to learn general heuristics rather than a
single solution, as we find that the model output converges
to a single optimal strategy when only a small number of
fixed landscapes are given (see Supplementary Information
for the results when 1 and 10 fixed environments are given
to the agent). In this experiment, we train the agent for
5, 700 epochs, and the final model is used to measure the
performance. Results reported are averaged across 5, 000
repetitions.

First, we compare the performance of the SLS from RL
with those of 12 baseline SLSs by measuring the mean pay-
off from all agents of multiple trials and multiple initial
landscapes, as shown in Fig. 3A and 3B (see Appendix for
details). Here, the average mean payoff corresponds to the
area under the curves in Fig. 3A divided by the total time
L = 200, while the final mean payoff corresponds to the
mean payoff value at the final time, 200. The result clearly
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shows the dominant performance of the SLS from RL, ex-
ceeding the average payoff of all baselines by a noticeable
margin.

Obviously, this overwhelming performance of the trained
agent is not inherent from the beginning; the agent initially
performed poorly and gradually improved via learning, as
visible in Fig. 3C. This strongly implies that the model some-
how acquired the ability of social learning during the learn-
ing process. Another noteworthy point is that the agent’s
average mean payoff constantly increased while the entropy
of the output distribution showed non-monotonic behavior
during the training. The entropy of an output distribution
directly assesses how confident each dimension of a solution
is; for binary cases, low entropy indicates that the proba-
bility of producing 1 is close to either 0 or 1, rather than
being indecisive and having a probability of 0.5. Hence, the
non-monotonic behavior of entropy indicates that the model
converged into a certain solution, but the convergence was
abandoned spontaneously and the strategy became more
random again. To further investigate these peculiar learning
dynamics, we plot a 3D strategy diagram and 2D output
diagrams for both tests from the model after 1, 000, 2, 000,
3, 000, and 4, 500 training epochs, when p0 = 50 (Fig. 3D).
Critically, we find that the agent passes through four unique
sub-optimal strategies during the learning process before it
reaches the final strategy.

The model starts from a totally random strategy that pro-
duces a probability of near 0.5 regardless of the input, simi-
lar to the PI-R strategy as expected. This is the stage where
the agent does not utilize the information from its neighbors,
i.e., it has no concept of social learning at all. The emer-
gence of referencing others appears after gaining extensive
experience from iterated games, in this case, around 1, 500
epochs (Stage 2 in Fig. 3D). Surprisingly, the first thing
that the agent learns is to copy the major solution, similar to
the CF strategy, which is accompanied by a drastic decline
in entropy. Although the concept of ’copying the major
solution’ is generally not the best-performing, as reflected
in the CF-based strategies in Fig. 3B, this concept can be
easily captured by an agent since we provide the frequency
of each solution as a feature. We speculate that passing
through this sub-optimal strategy facilitates faster learning
by providing additional options to copy and helping the
agent learn the notion of copying much faster, similar to a
recently reported phenomenon in artificial agents for social
learning (Köster et al., 2022). This is further supported by a
delay in the learning process when the frequency feature is
not provided (see Supplementary Information for the result
where no solution frequency is given). In Stage 2, the agent
finds a connection between observed information and its
behavior, which can be likened to the acquirement of neu-
rophysiological circuits such as mirror neurons (Dickerson
et al., 2017; Olsson et al., 2020).

𝑝0 = 50

A

B C

𝑝0 = 30 𝑝0 = 70

Figure 4. (A) A 3D strategy diagram and 2D output diagram from
the final model of the default environment with p0 = 50. The
zoomed-in inset shows the output probability from p2 = p3 = 0
and 0 ≤ p1 ≤ 100 to visualize the clear strategic boundary at
p1 = 50, highlighted with a white dotted line. (B, C) 3D strategy
diagrams and corresponding insets with p0 = 30 (B) and p0 = 70
(C). The model is trained on a fully connected network of 100
agents with NK(15, 7) environments.

After the concept of copying is well understood by the agent,
the subject that is copied quickly transfers from the major
solution to the best solution around 2, 500 epochs (Stage 3 in
Fig. 3D). We find that the agent needs a far greater number
of training epochs to reach the final strategy if it has to learn
the payoff ranking by itself (see Supplementary Information
for the result where the payoff ranking is not provided).
After this subject switching, the agent gets confident with
the strategy of ’copying the best solution’, as shown in vivid
blue in the 3D diagrams in the figure. The agent in this
stage shows a similar strategy to the BI strategy with a small
chance of flipping.

The last stage of learning starts with a rapid increase in
entropy after 3, 000 epochs (Stage 4 in Fig. 3D). This does
not indicate that the model backslides to the very begin-
ning, however; the agent clearly maintains the lessons from
former experiences in some conditions while intentionally
forgetting them in other conditions according to a specific
threshold. The appearance of the translucent lower region
of the 3D diagram and greenish stripes in the 2D output
diagram from the model of 4, 500 epochs demonstrates such
a transition visually. It turns out that the agent at this stage
begins to compare the payoff of the best solution (p1) to its
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own payoff (p0) and begins to choose to employ a different
strategy based on the comparison. By observing the final
model’s 3D strategy diagram and 2D output diagram for
different p0 (Fig. 4), it is evident that the agent performs a
random search when p0 ≥ p1 and imitates the best solution
when p0 < p1. In this final stage, the agent exhibits every
key aspect of the BI-R strategy, the best-performing baseline
SLS in the environment.

This remarkable transition is one of the key findings of our
work. Note that from each individual’s perspective, perform-
ing a totally random search gives a minuscule probability
of finding a better solution (especially if the agent already
achieved a high payoff), hence it cannot be properly incen-
tivized by an optimization scheme without long-term plan-
ning. From stage 3 where every agent blindly copies others,
our RL agent realizes that no one, including itself, could
achieve a better solution if nobody provides a new solution
to the population pool. This leads the agent from an informa-
tion scrounger to an information producer (Laland, 2004) by
abandoning some part of selfish social learning and develop-
ing individual learning which also benefits other agents. In
stage 4, the agent finds the exact division between two learn-
ing schemes, achieving the most effective form of long-term
cooperation. Also, we find that the agent here deliberately
chooses to perform a totally random search (similar to “-R”
individual learning) among the various forms of individual
learning it may adopt. See Supplementary Information for
the movie of 3D strategy diagrams throughout the full train-
ing, which exhibits various short-lived strategical notions
such as ’copying the second-best’ and individual learning
that adopts randomness while preserves the current solution.

Throughout this detailed analysis, we demonstrate both the
variety of SLSs that can be expressed by our model and the
capability of the RL framework for observing the transmis-
sion of behavior by social interactions. Note that we did
not incentivize any social behaviors by explicitly providing
the means or assigning specific rewards; rather, our frame-
work provides only raw information from randomly chosen
neighbors without any prior knowledge. By employing a
model-free computational approach with neural networks,
we show that diverse and complex social learning strate-
gies in nature can spontaneously emerge from the simplest
reward with sufficient social interactions.

4.2. Various different environments

One of the major advantages of the computational approach
for social learning is that we can freely alter the charac-
teristics of the given environment that reflects the various
learning dynamics observed in the real world. In Fig. 5, we
present the performance and strategies of the final models
trained with three different environmental settings.

First, we change the network structure between agents to

alter the speed of information spread (Derex & Boyd, 2016;
Smolla & Akçay, 2019) (Fig. 5A). The network we use, the
Max mean clustering (MaxMC) network, is directly adopted
from (Barkoczi & Galesic, 2016). It consists of the same
100 agents as the fully connected default network but has
a lower degree (19 links for each node) and is optimized
to maximize the mean clustering coefficient (see Appendix
for details). We choose this network as an extreme case of
slow information spread, as this network was employed by
the original authors to demonstrate the effect of a high net-
work diameter on the performance of SLSs. Next, we reset
the landscape every 50 time step to simulate a temporally
changing environment (Aoki et al., 2005; Hashimoto et al.,
2010; Giannoccaro et al., 2018; Toyokawa et al., 2019) (Fig.
5B). Since each R = 4 landscape lasts L = 50 time steps,
we call this experiment L50R4. Lastly, we smoothen the
landscape by setting K = 3 and lengthen the time span to
twice the default game, L = 400 (Fig. 5C). This specific
setting (K3L400) is deliberately chosen to let a CF-based
SLS become the best-performing baseline (in this case, CF-
I), while also demonstrating the variety of environmental
settings that can be controlled.

From the results in Fig. 5, all three agents exhibit strategies
similar to BI-R, which appear to be outstanding in every con-
dition. We find that in some cases, the agent may stay longer
at a certain stage compared to the default environment, but
eventually, the model transits from such sub-optimal strate-
gies and converges to a final strategy. Even in the K3L400
environment, the agent’s final strategy does not reference the
major solution but still exceeds the best-performing baseline,
CF-I. This result suggests that the ’copying the best solution’
strategy is indeed powerful, especially when it is accompa-
nied by enough randomness from individual learning; both
characteristics are successfully discovered by our RL frame-
work. We also apply our framework to other environments,
including a much more rugged landscape (K = 11) and 53
different real social networks from (Ghasemian et al., 2020),
the agents of which again show superior performances com-
pared to the baselines (See Supplementary Information for
results).

4.3. Comparison between specialized agents from
different environments

With a careful inspection, one may notice that the 2D output
diagrams of the three models in Fig. 5 are not perfectly
identical. Even though we described all three agent’s strate-
gies as “similar to BI-R”, they are in fact not the same. We
observe that there are critical differences among these strate-
gies, and that each model adapted differently to maximize
the reward in their given environment.

The difference between strategies becomes clear when we
plot the average model output (probability of producing 1)
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Figure 5. Trained model results from diverse environment settings compared to default. From left to right, each panel shows a conceptual
diagram, mean payoff, average mean payoff over time, and 3D strategy diagram with 2D output diagrams for both BI and CF tests.
(A) Results from a different underlying network. Instead of a complete network, agents are now connected in a modular network that
is optimized to maximize the mean clustering coefficient (MaxMC). (B) Results from a temporally changing environment. Every 50
time steps (hence 4 times among 200 time steps), the underlying NK landscape is randomly reassigned, and all of the scores are newly
calculated based on the new landscape (L50R4). (C) Results from a smoother environment with a longer time span. The landscape
becomes smoother with K = 3, and the total time steps are increased to 400 (K3L400).

of the agents from default, MaxMC, L50R4, and K3L400
environments, by applying the BI test template with p2 =
p3 = 0 and 0 ≤ p0, p1 ≤ 100 (Fig. 6A). For every 0 ≤
p0 ≤ 100, we compute the model output with p0 ≤ p1 ≤
100 and separately measure the average in four different
regions; regions I and II correspond to the dimensions of the
non-best and best solutions when p0 ≥ p1, while regions
III and 4 correspond to the dimensions of the non-best and
best solutions when p0 < p1, respectively. For example,
the average value of the BI-R strategy with this division
would be 0.5 in regions I and II (due to random individual
learning), 0.0 for region III, and 1.0 for region IV. Focusing
on region III, we see that none of the trained agents show
the exact value of 1.0, which implies that all of them are
copying the best solution with some chance of flipping. In
the real world, this kind of stochastic copying can occur due
to the intrinsic noise of the copying mechanism or some
level of persistence in following an individual’s own traits.

Among the agents, the agent from the L50R4 environment
has the highest possibility of copying (0.9941) while the one
from K3L400 has the lowest (0.9269). To find out whether
this difference is evidence of adaptation to their different
environments or not, we evaluate the average mean payoff
of the models on these two opposite ends of the spectrum,
namely, the L50R4 and K3L400 environments (Fig. 6B).
We find that L50R4 and K3L400 are the best-performing
model in their own environment, but show significantly low
performance in the opposite environment. This strongly
testifies to the fact that the difference in copying probability
is a result of a proper adaptation to the environment. We
speculate that the high chance of flipping in the agent from
K3L400 is related to the fact that CF-based strategies, which
generally involve a lower level of convergence, show better
performances in the K3L400 environment. To summarize,
reinforcement learning effectively guides the agent to the
optimal SLS for the given environment by tuning the deli-
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Figure 6. (A) The average output probability of four regions from the BI test template with p2 = p3 = 0, calculated for 4 models (Default,
MaxMC, L50R4, K3L400) trained in different environment settings. The upper diagram is a portion of the 2D output diagram when
p2 = p3 = 0 and 0 ≤ p1 ≤ 100 showing the division of the four regions. The output is averaged for every pair of 0 ≤ p0 ≤ p1 ≤ 100.
Here, regions I and II indicate the dimensions of the non-best and the best solution when p0 ≥ p1, respectively, while regions III and
IV indicate the dimensions of the non-best and the best solution when p0 < p1, respectively. The zoomed-in inset emphasizes the
difference of degree of copying between each model by magnifying the result from region IV, which has values of 0.9562 (default),
0.9863 (MaxMC), 0.9941 (L50R4), and 0.9269 (K3L400). (B) Average mean payoff of the 4 models evaluated in L50R4 (left) and
K3L400 (right) environments. ***p < 0.001.

cate balance between exploration and exploitation, a process
which could not be achieved without an exhaustive search.

5. Conclusion and Outlook
Different from previous studies (Vinitsky et al., 2021; Mc-
Kee et al., 2021; Köster et al., 2022), the payoff of our work
is given by a fixed landscape, not from a game between
agents with a payoff matrix. Our work suggests that social
learning can emerge even when explicit payoff interaction
between agents is not present, which resonates with the im-
portance of vicarious reinforcement (Bandura et al., 1963)
in social learning theory. With enough social interaction and
observable information, we show that a simple motivation of
payoff maximization can lead an individual to an advanced
strategy of social learning.

Since our RL framework opens a new way to explore a vast
space of social heuristics, one may alter the assumptions
of the present work like we changed the episode length
and network structure. For example, the observable payoff
could be indirect and noisy (Horner et al., 2010; Mackintosh,
1971; Van de Waal et al., 2010), or the strategy may involve
time-dependent memory such as the social learning of multi-
agent multi-armed bandits (Vial et al., 2021; Sankararaman
et al., 2019; Rendell et al., 2010). Also, agents in nature
often perform multiple strategies at once (Kendal et al.,
2018; Nakahashi et al., 2012; Bordignon et al., 2021) and
do not randomly choose their subjects from among their
neighbors (Laland, 2004), which might need more elaborate
architectures to model. By implementing a permutation-

invariant neural network as a policy generator and using
reinforcement learning, our framework is versatile enough
to integrate a variety of intriguing social characteristics.

Still, there are several limitations to the developed frame-
work. Clearly, our stochastic formulation and neural imple-
mentation cannot express every possible SLS due to limita-
tions in both modern neural networks and the formulation
itself. For instance, the flipping of exactly one random bit
in a solution cannot be precisely expressed with our for-
mulation. Also, the investigation and visualization of our
model mainly focused on the similarity to already known
strategies, which implies that there could be some hidden
behavior that is complex enough to be undetected by our
test templates (see Supplementary Information for more
discussion). Moreover, societies in nature consist of het-
erogeneous groups of agents, experience mating and the
birth-death process (Smolla & Akçay, 2019), and the ac-
quired knowledge of SLSs is not instantly adopted by every
constituent. Extending the current work to incorporate such
biological and cognitive processes would be an intriguing
research direction.

To sum up, we developed a neural architecture and training
regime that yields complex social learning strategies sponta-
neously from scratch. Our study has broad implications for
social norm formation, cultural evolution (Vinitsky et al.,
2021), and the exploration/exploitation trade-off (Mehlhorn
et al., 2015). We highlight that the successful modeling of
SLSs via reinforcement learning can provide plausible evi-
dence for the superiority of certain SLSs observed in the real



Social learning spontaneously emerges by searching optimal heuristics with deep reinforcement learning

world and also the detailed dynamics of their emergence.

6. Data availability
Simulation code and data files are available at
https://github.com/nokpil/SocialNet.
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E., Vezhnevets, A. S., and Leibo, J. Z. A learning
agent that acquires social norms from public sanctions
in decentralized multi-agent settings. arXiv preprint
arXiv:2106.09012, 2021.
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A. Detailed methods
A.1. Stochastic formulation of multi-dimensional SLSs

In this work, we define SLSs as stochastic heuristics that aggregate information from observations and produce a probabilistic
expression of a future state. More rigorously, we consider the state of the i-th agent at time step t, Xt

i, as an N -
dimensional vector of categorical variables. Here, a state can be regarded as a solution for a landscape or a result of an
action performed by an agent. Each of the dimensions of the state, xti,d, may have a different number (sd) of possible
actions, namely, xti,d ∈ a1d, a

2
d, · · · a

sd
d = Ad. The joint action space is then defined as Xt

i = (xti,1, x
t
i,d, · · · , xti,N ) ∈

A1 ×A2 × · · · × AN = A. Also, we denote the payoff as pti, the additional features as Iti, and the aggregated information
from a single agent as Gt

i = (Xt
i, p

t
i, I

t
i). With these notations, an SLS is formulated as a stochastic transition function,

Pr(Xt+1
i ∈ A) = F(Gt

i,G
t
j1
, · · · ,Gt

jS
), where the indices (j1, j2, ...jS) indicate S interacting neighbors.

A.2. Task environment generation

We employ the NK landscape (Kauffman & Levin, 1987), which is multi-peaked and tunably rugged, for the task environment
of the social learning strategies (SLSs). The NK landscape assigns a payoff to a binary N -dimensional vector by averaging
the contributions of the N element, where each contribution is dependent on K − 1 other elements that are randomly
determined at the initial construction. Precisely, given payoff function f(Ni|Ni, Ni+1, . . . , Nk), the total payoff P is
1
N

∑N
i=1 f(Ni|Ni, Ni+1, . . . , Nk). We set each f(Ni|Ni, Ni+1, . . . , Nk) as a random number drawn from a uniform

distribution between 0 and 1 at the initialization of the landscape. The higher the value of K, the more the total payoff
changes by a flip of a single element and the more rugged the landscape. We normalize the total payoff by the maximum
payoff on a landscape (Pnorm = P/Pmax) and raise its value to the power of 8 ((Pnorm)

8)), following past studies (Siggelkow
& Rivkin, 2005; Lazer & Friedman, 2007; Barkoczi & Galesic, 2016). For ease of explanation, we scale the payoff by a
factor of cpayoff = 100 to normalize the possible payoff from 0 to 100.

For social learning, we generate networks and let n = 100 agents receive the social information from their neighbors. For
the fully connected network, every agent is connected to every other agent, fixing the degree of every node to n− 1. For
the max mean clustering (MaxMC) network, we adopt the network structure from (Barkoczi & Galesic, 2016) where the
network with a fixed degree of 19 is iteratively rewired to maximize the mean clustering coefficient of the network.

A.3. Baseline simulation procedure

We assign uniformly random binary vectors to a group of n individuals, and they perform the gathering and adoption process
at each time step. First, they apply the given SLS by collecting information from randomly sampled s agents among their
connected neighbors. The established social option could be the solution of the agent with the highest payoff (best imitator,
BI), the most frequent solution in the sample (conformist, CF), or just any random solution in the sample (random imitator,
RI). Second, they adopt the social option if its payoff is greater than the current one, or otherwise, they perform individual
(asocial) learning instead (and adopt it if its payoff is greater than the current one). In the case of CF, we also perform
individual learning when all of the solutions are equally frequent. The pure individualist (PI) only performs individual
learning and does not engage in any form of social learning.

There are several options for asocial learning, which is expressed with a hyphenated abbreviation: models with “-I”
(individual) perform exploration by flipping a randomly selected single bit from the current solution and adopting it if the
payoff becomes higher; models with“-P” (probabilistic) assign an independent probability (1/N ) for each dimension to
be flipped (hence multiple bits can be flipped in a single step); and models with “-R” (random) sample the asocial option
completely randomly, without regard to the current state. Pure model names (BI, CF, RI) indicate that the model does not
perform individual learning.

We repeat this procedure for L = 200 steps and record the statistics. The test results, including the neural SLSs, are averaged
across 100 randomly initialized repetitions from 50 different landscapes, hence a total of 5, 000 repetitions per SLS.

A.4. Agent architecture and training method

For reinforcement learning, we use a actor-critic algorithm with importance sampling and a generalized advantage estimator,
which its implementation is identical to a standard proximal policy optimization (PPO) (Schulman et al., 2017) method
without any clipping on its policy. The discrete stochastic actor with categorical probability distribution is trained to receive
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the same information as the baseline SLS and yield a new solution (binary vector of length N ) for each agent, while the
critic aims to approximate the value function of the given state. We employ a general advantage estimator (Schulman et al.,
2015) for the advantage function with a discounting factor γ = 0.98 and λ = 0.95. When the goal of the neural SLS is to
maximize the area under the average payoff curve, we provide the reward as a payoff of the produced solution at each step.
When the goal is to maximize the final payoff at the final step, we provide the reward as a final payoff scaled by trajectory
length L at the final step.

Generally, there is no priority between sampled neighbors in SLSs, but the current learner should be able to discriminate
itself from its neighbors. To handle this problem, we employ the set transformer (Lee et al., 2019) as an architecture for the
actor to guarantee permutation invariance and attach a binary variable to each agent’s solution vector as a self-indicator
(1 for the current agent and 0 for sampled neighbors). To provide the exact ranking and frequency, we calculate (1) the
competition ranking of scores among neighbors and itself (1 +N agents), and (2) the frequency of each state among its
neighbors (N ). We normalize these two features to let the terms have a scale of 0 to 1. The input is formed as a tensor
of shape B × (S + 1)× (N + 1 + I), where B is the batch size, S is the number of neighbors, N is a dimension of the
given NK landscape, and I is the number of features we provide. Here, N + 1 + I indicates that the fitness of each solution
(1) and additional information (I) are provided to the model. After receiving this input, the actor yields a tensor of shape
B × 2×N , which represents the logit of the probability of 0 and 1 for each dimension. The final output is then sampled
from the normalized logits and compared with the current solution. The one with a higher payoff becomes the solution of
the agents for the next time step. This procedure is repeated for an episode length of L = 200 steps.

We trained our model for 10, 000 epochs with early stopping, which took around 3 to 4 days using five Titan V GPUs
in parallel computation. All of the experiments used the tanh activation function and Adam optimizer (Kingma & Ba,
2014) with a learning rate of the actor of 1.0× 10−5, learning rate of the critic of 3.0× 10−5, and entropy coefficient of
0.0003, without any further scheduling. In each epoch, every 100th iteration sampled 1, 000 data from the replay buffer for
computing losses for the actor and critic and performing a gradient update. All of the code is implemented in PyTorch.

A.5. Strategy visualization

For the BI test, we first obtain the model output probabilities for a test template with all possible integer pairs of payoff
(p0, p1, p2, p3), where 0 ≤ p0 ≤ pmax and 0 ≤ p3 ≤ p2 ≤ p1 ≤ pmax. We can set this inequality without loss of generality
and reduce the effective number of payoff triplets (for each p0) from (pmax + 1)3 to (pmax+1)(pmax + 2)(pmax + 3)/6 (which
is 176, 851 for pmax = cpayoff = 100) because the SLS (and our model) is invariant to the neighbor permutation. The model
output, corresponding to the probability of producing 1, is plotted in the form of a 2D output diagram.

For the 3D voxel plot, we calculate the normalized Euclidean distances from (1) the self solution xself, dself =√∑N
i (xi − xself,i)2/N , (2) the solution with the second highest payoff (third row of the test template) xsecond,

dsecond =
√∑N

i (xi − xsecond,i)2/N , and (3) the solution with the highest payoff (second row of the test template) xbest,

dbest =
√∑N

i (xi − xbest,i)2/N to each model output x. Finally, we set r = 1− dself, g = 1− dsecond, b = 1− dbest, and
opacity a = 0.3(1−min(dself, dsecond, dbest))

2 for visualization. These values become the color code of the corresponding
voxel’s face, (r, g, b, a).

For the CF test, we use a different test template having one neighbor with a strictly high payoff p1 and two neighbors with
the same solutions and lower payoff, p2 = p3 < p1. Considering the permutation invariant, the effective number of payoff
triplets (for each p0) for this condition is (pmax)(pmax +1)/2 (which is 5050 for pmax = 100); the 2D output diagram depicts
the model output for these inputs.

B. Learning scheme with fixed environment
Here, we present the result when instead of providing random NK landscapes at every epoch, only 1 and 10 fixed NK
landscapes are given to the agent during the training (Fig. S1A). We find that in the case of a single landscape, the model
performance quickly converges to the maximum value, 100. This optimal performance is obtained from finding the best
solution ([1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1] in this case) and precisely producing this solution regardless of the input (Fig.
S1B). This result demonstrates the effectiveness of reinforcement learning as a meta-heuristic, but the agent failed to achieve
a general sense of social learning and choose to memorize the answer and stick with it, which is intuitively the best strategy
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in this particular case.

Interestingly, we can observe that the agent manages to achieve great performance (over 80) when 10 different landscapes
are given (Fig. S1A). In this case, we employ 10 GPU and parallel computing to train the agent. Since the memorization
of a single solution would not yield a high average payoff for 10 different landscapes, we check the model output with
the Best-Imitator test (Fig. S1B) The model output seems like it tries to copy the third-best solution, but we perform the
same test with different template and find that the model output looks similar regardless of the test template. Note that in
this case, many dimensions of the output probabilities have neither 0 nor 1, but intermediate values. This implies that the
model did not attempt to learn from others or memorize a single solution, but somehow found the probabilistic solution that
can achieve good performance for all 10 environments when iteratively applied to all agents. We test this hypothesis by
evaluating the model performance with randomly generated NK landscapes. As we expected, our model shows a good mean
payoff for its training landscapes but fails to achieve any meaningful performance for random landscapes. One notable thing
is that the increase of mean payoff is not instant; our model’s probabilistic solution needs to be iteratively applied in order to
achieve its final solution. Although the existence of such a solution is intriguing on its own, the model failed to acquire any
social learning skills in this environment. These results imply that the provision of enough different landscapes is vital for
motivating agents to learn social skills rather than optimized to fixed environments.

C. Learning scheme with group-averaged reward
Here, we present the result when instead of individual payoff, the group-averaged payoff is given as a reward at each timestep
during the training. We find that the individual has failed to learn any form of social learning when the group-averaged
reward is given (Fig. S1). We speculate that in order to tackle this problem from a group-focused viewpoint, one might
need to specialize in the architecture and loss function for controlling the action of the entire group, such as a centralized
controller. Note that in that case, the dimensionality of the group action would be enormous (15× 100 = 1500 in our default
case) so another form of bypass or remedy would be needed to reduce it effectively.

D. Training results when the frequency feature is not provided
Here, we test the alternative provision of information by removing the frequency feature from the input. In the default
settings, we provide 5 different information of itself and 3 neighbors to each agent without any structural information: binary
solution vector of dimension N , payoff, self-indicator, ranking (including itself), and solution frequency (excepting itself).
We name this setting as PIRF (Payoff, Indicator, Ranking, Frequency). By removing the solution frequency feature, the
setting is then called PIR setting.

We plot the mean average payoff from five trials with different seeds for each setting (Fig. S3). We can observe that the
default setting, PIRF advances the timing of the realization of copying compared to the PIR setting. As we explain in the
main manuscript, we speculate that the additional information which can lead to performance improvement might boost the
learning process by facilitating the acquisition of the concept of copying.

E. Training results when the payoff ranking is not provided
Here, we test the alternative provision of information by removing payoff ranking (and frequency feature) from the input,
which is PI setting. We find that the final model of PI and PIRF is qualitatively similar (not shown), but the PI setting takes
much longer training epochs to reach its final model (Fig. S4). We speculate that this slow convergence is because our
model tries to learn a total order of all 4 continuous payoff, which could be quite challenging without tailored architecture
and loss function (Burges et al., 2005). In this case, since we normalize payoff into [0, 1] range, the task would be slightly
easier and the model eventually succeeds to learn a well-performing ranking function.

F. Training results with more rugged landscape with K = 11

Here, we present the result from a more rugged environment compared to the default K = 7 landscape, K = 11. We find
that due to its extreme ruggedness, the agent struggles to realize the very first step of social learning; the concept of copying
(Fig. S5A, B). We trained the model for nearly 4, 500 epochs and the model stayed at the initial random strategy. We expect
that increasing training epochs will eventually lead to a realization of copying (since we find that the model with a less
rugged landscape tends to realize the concept of copying earlier), there are ways to boost this initial stage of learning.
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Figure 7. (A) Average mean payoff when 1 (blue) and 10 (red) fixed landscapes are given during the training, instead of randomly
initialized landscape at each epoch. (B) Best-imitator test result of the final model from 1 (left) and 10 (right) landscapes. (C) Mean
payoff and (D) average mean payoff of the final model from 10 landscapes, evaluated with 10 random landscapes (black) and 10 training
landscapes (gray).
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Figure 8. (A) Average mean payoff and (B) entropy of two model output, the model with group-averaged reward and the model with
individual reward (default). The bold line shows an exponential moving average with a smoothing factor of 0.99.

Figure 9. (A) Exponential moving average of average mean payoff from five trials of PIR and PIRF (default) settings (with a smoothing
factor of 0.99). The bold line shows an average of five trials.
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Figure 10. (A) Average mean payoff and (B) entropy of two model output, PI and PIRF (default). The bold line shows an exponential
moving average with a smoothing factor of 0.99.

When training the agent with a complex task, curriculum learning (Narvekar et al., 2020) helps the training by scheduling
the level of difficulty from small and easy tasks to large and difficult tasks, successively and gradually. We can apply this
technique in our problem settings by initially providing a less rugged landscape and then substituting it with a more rugged
landscape afterward. We also plot the result with a curriculum learning scheme from three different scheduling; starting from
K = 3 landscape, each scheduler then changed the environment to K = 11 landscape at 1, 000 (when the agent realizes the
concept of copying), 2, 500 (when the agent learns to imitate the best), and 5, 500 epochs (the final model), respectively
(Fig.S5A and B). In all three cases, the model successfully learns social learning without any problem, implying that the
realization of copying is the sole and hardest barrier to pass. We show that the final model from scheduling of 2500 epoch
shows nearly similar performance compared to the BI-R model (Fig. S5C and D)

G. Verification with real social networks
We adopted a network dataset from (Ghasemian et al., 2020), which contains 124 social network structures among a total of
550 networks. Since the conformist baseline needs at least 3 neighbors to perform its SLS, we applied k-core decomposition
to all 124 networks with k = 3 and check whether removed nodes are less than 5% from its original network and the
decomposed network is still connected. After the decomposition, a total of 88 networks passed the criteria and we filtered
networks with more than 500 nodes. As a result, 53 networks satisfied all conditions, and their node numbers range from 39
to 478 after the decomposition. We perform the same procedure as the default settings with all 53 networks. The results are
averaged across 20 repetitions from 5 different landscapes, hence a total of 100 repetitions per network per SLS.

We find that similar to the other results, BI-R showed the best performance among the baselines and our model exceeds its
performance, but by a small margin in this case (Fig. S6). The higher error bar is due to a smaller number of trials. Note
that in this case, we do not individually train the model for each of the 53 networks, but the default model (environment of
complete network with 100 agents) is used to test all of the results. In the main manuscript, we show that the characteristic
such as the level of copying can be different by training environment, and some environment prefers a higher level of
copying while other environment does not. We guess that in this case, by averaging all results from 53 networks, many of
the advantages of our model from delicate balancing might be canceled out and result in a small margin compared to the
full-copying model (BI-R). We present this result to demonstrate that the final model of our framework is still powerful for
(15, 7) settings in various forms and sizes of real social networks.
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Figure 11. (A) Average mean payoff and (B) entropy of four model output, K = 11 without any scheduling (K11), and with three different
scheduling scheme which changes the landscape from K = 3 to K = 11 at epoch 1, 000 (K3K11(E1000)), 2, 500 (K3K11(E2500)),
and 5, 500 (K3K11(E5500)). The bold line shows an exponential moving average with a smoothing factor of 0.99. (C) Mean payoff
and (D) Average mean payoff over time of SLS from the final model from K3K11(E2500) (RL) and various baseline SLSs. Error bars
show ±5 standard error of the mean.
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Figure 12. (A) Mean payoff and (B) Average mean payoff over time of SLS from reinforcement learning (RL) and various baseline SLSs.
Error bars show ±5 standard error of the mean.

H. Movie S1: Strategy transition throughout the training with the default setting
Here, the movie shows the transition of the 3D strategy diagram, which spans nearly the entire training sequence (the movie
ends at 5, 400 epochs where the final model is from 5, 700 epochs of training.) We can observe that various short-term
strategical notions appear during the training (Fig. S7). For instance, during the transition between stage 2 and 3 (epoch
2, 700), the agent starts to copy the second-best strategy in some cases, depicted as green voxels. Considering that the agent
during this transition learns a concept of ’copying based on payoff’, copying the second-best solution can be regarded as a
plausible intermediate strategy to passing by. Also, during the transition between stage 3 and 4 (epoch 3, 800), the agent
adopts a different form of individual learning, depicted as red, opaque voxels, before it finally settles down to a total random
flipping. Since the red color indicates high similarity with the current solution of the learner itself, this strategy is similar to
the “-P” (probabilistic) individual learning in the baseline SLS where the agent keeps its original solution but allows some
flipping. The agent eventually abandons such form of individual learning at the end of stage 4, since the “-I” individual
learning shows superior performance compared to the “-P” individual learning when combined with BI strategy, as shown in
Fig. 3B in the main manuscript. We speculate that the BI strategy goes well with highly exploratory individual learning
because ’copying the best’ strategy often causes early convergence due to its diversity-reducing nature, and exploration
from the individual learning could complement such demerit. These intermediate strategical notions are indeed interesting
observations by themselves, and also clearly demonstrate the vast scope of SLSs that our model can express.
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Figure 13. 3D strategy diagrams from the model with (A) 2, 700 epochs and (B) 3, 800 epochs of training, which are the captures from
the supplementary movie S1. The model is trained on a fully connected network of 100 agents with NK(15, 7) environments.


