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a b s t r a c t

A vital challenge for many socioeconomic systems is determining the optimum use of lim-
ited information. Traffic systems, wherein the range of resources is limited, are a particu-
larly good example of this challenge. Based on bounded information accessibility in terms
of, for example, high costs or technical limitations, we develop a new optimization strat-
egy to improve the efficiency of a traffic system with signals and intersections. Numerous
studies, including the study by Chowdery and Schadschneider (whose method we denote
by ChSch), have attempted to achieve the maximum vehicle speed or the minimum wait
time for a given traffic condition. In this paper, we introduce a modified version of ChSch
with an independently functioning, decentralized control system. With the new model,
we determine the optimization strategy under bounded information accessibility, which
proves the existence of an optimal point for phase transitions in the system. The paper
also provides insight that can be applied by traffic engineers to create more efficient traffic
systems by analyzing the area and symmetry of local sites. We support our results with a
statistical analysis using empirical traffic data from Seoul, Korea.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Traffic flows represent various and intriguing complex phenomena. Numerous studies of traffic system problems have
motivated research by physicists due to their statistical and dynamical features [1–11]. Due to the inherent properties of a
traffic system, an agent-based model (ABM) has been employed to study traffic dynamics. We can classify a traffic system
with an ABM into two categories for study: pedestrian dynamics and vehicle dynamics. Pedestrian problems have been in-
vestigated with microscopic models, including the cellular automata (CA) model [10–16], the social force model [5,17,18],
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the magnetic force model [19] and the centrifugal force model [6]. In contrast to pedestrian problems, vehicle problems
focus not only on individual behavior but also on the structural effect of important variables. The traffic signal is one of
the most important variables for describing a phase transition, such as the transition from the jam phase to the free-flow
phase [7,20,21]. Although numerous studies about traffic jams, chaotic traffic flows, pedestrian flows, and the sequence of
traffic signals have been performed [22–27], few studies have addressed system efficiency. System efficiency is defined as
the ratio of the increase in traffic flow to the cost of using traffic signals to create more efficient traffic conditions in an
urban traffic system. The control of efficient traffic signals is important for improving mobility and reducing the wait time
of vehicles on the road because intersections are the most common reason for speed reductions in a large city [28]. The jam
state of a traffic system increases the wait time or reduces vehicle speeds. To mitigate the jam state, various studies have
been intensively performed in many disciplines, and brilliant mathematical and numerical models have been introduced.

We discuss the ChSch model because it is the simplest toy model available for developing the decentralized control
concept with as few variables as possible. Previous studies have examined decentralized and self-organized traffic
signal control [7,29]. However, we focus on an independently functioning decentralized control system to determine the
association between the real world and the numerical model using a simplified toy model. Although most parameters vary,
we select identical values for all vehicles to minimize the number of parameters, facilitate calibration, achieve robustness
and exclude irregular results due to parameter variations. We ensure that this approach simplifies the model for use in
various studies.

The ChSch model simulates urban traffic with intersections [30,31]. The model combines two previously suggested
models the Biham–Middleton–Levin (BML) model [24,32] and the Nagel–Schreckenberg (NaSch) model [33,34]; two-
dimensional space is extracted from theBMLmodel, and traffic signals are extracted from theNaSchmodel. This combination
produces a realistic traffic model with twomajor factors concerning traffic jams: themovements of vehicles and the control
of traffic signals. Brockfeld and Barlovic [1] investigated the nature of the modified ChSch model using several global traffic
strategies and concluded that a rule named the Green Wave Strategy (GWS) outperforms other strategies for both low and
high vehicle densities. The GWS has an offset parameter, withwhich the switching time of adjacent traffic signals is delayed.
The majority of these studies have attempted to improve traffic conditions in regard to the mean flow, which is the average
distance for the movement of all vehicles. All variables, such as traffic signals, movement of vehicles and density of vehicles,
control the traffic phase from the jam phase to the free-flow phase or vice versa. The strategy can enhance traffic conditions
via other approaches [35,36]. The GWS is the best strategy, because it incorporates all information on a simulation map,
which results in high costs and inefficient in use.

In this paper, we focus on the bounded range of information to control a traffic signal system by considering the
related high costs and technical limitations. This method exhibits more affinity with real traffic conditions because districts
independently manage pedestrians and vehicles in actual urban traffic situations [37–39]. If information is limited in a
traffic system, namely by the restriction of the interlocking range of traffic signals, the efficiency of a traffic system will
vary based on the information range. Considering limitations on actual information about an urban traffic system caused
by technical issues, we analyze the effect of limited information to obtain a meaningful solution. The limited information
causes the entire map to be partitioned into various independent divisions. Each division is physically connected; however,
independent players are functionally considered. In addition, the area and symmetry when the system is divided into small
lots is considered. Thus, we investigate not only the amount of information compared to the size of each section area but
also the effect of the rectangular symmetry of the local site.We determine if two parameters can fulfill their roles as valuable
components that are properly based on the empirical data of Seoul, which is also known as the capital city of South Korea.

This paper is organized as follows: In the following section, the definition, characteristics and regulation of the model
used in the simulation are presented. We attempt to modify the ChSch model to prevent gridlock of vehicles as presented
by Ref. [30] and introduce several parameters to assess the nature of our model. In Section 3, the mean flow (equivalent to
the concept of velocity flow), which is introduced under various limited information circumstances, is tested via numerical
simulation. The results with the alteration of several parameters and the interpretation of the simulations are presented. A
newly defined symmetricity is proposed to test the role of symmetry in traffic efficiency.We provide a comparison between
the numerical simulation data and the empirical data. Section 4 presents a discussion of the obtained results and of the
highlights of the study.

2. Models and strategies

2.1. Model settlement

The ChSch model reflects two critical features of actual urban traffic: numerous vehicles and traffic signals [30]. The
entire map is composed of N × N intersections connected by streets with a length L, including traffic signals; thus, L − 1
cells represent single streets. Fig. 1 shows a snapshot of our simulation model. Every street consists of a set of cells that
forms a square lattice. The total number of cells for each successive street is LT = NL. After establishing the map with
intersections and traffic signals, vehicles are randomly scattered with a given density ρ. The ChSchmodel contains only two
direction-bound vehicles; the number of eastbound vehicles and northbound vehicles are identical. A periodic boundary
condition is applied to conserve the number and directions of the vehicles. The total number of vehicles in the entire map
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Fig. 1. Snapshot of 4 × 4 ChSch model with density 0.5. The distance between two intersections is L − 1 = 9. Black cells are vacant, white cells represent
street cells without cars, and other colors represent speed of vehicles on the street. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

is Nv = 2Neast = 2Nsouth, and the vehicle density ρ is defined by

ρ =
Nv

N2(2L − 1)
. (1)

The vehicles can switch their velocities according to the NaSch model, in which the range of velocities is an integer from
0 to vmax, where vmax is a givenmaximum speed (refer to Appendix A for details of themodel). Themodification of the ChSch
model protects the simulation from a completely blocked state, which we refer to as gridlock; gridlock is an obstacle to the
exploration of high-density cases. The ChSch model, which reproduces all observed collective effects of vehicle flow, uses
all interactions over the entire map. In contrast, the interactions are local in our approach.

2.2. Description of strategies

We form an N × N lattice with east streets and north streets. The lattice is mapped using rectangular coordinates, in
which each traffic signal is assigned to a grid point of the coordinate system. According to the GWS, a traffic signals delay
time Tdelay is given. Tdelay is the time delay between two traffic signal phases, i.e., green and red. If we denote traffic cycle
time T as a time interval to change traffic light, one color to another, a traffic signal with the coordinate (i, j) has the offset
parameter ∆Ti,j, for i, j = 0, 1, . . . ,N , which is given by following equation with cycle time T of flipping traffic light.

∆Ti,j = [(i + j)Tdelay]mod(2T ), (i, j = 0, 1, . . . ,N − 1). (2)

The offset parameter determines the delay time for each traffic signal. Fig. 2(a) shows the phase change diagram of the
traffic signals over time. As its name implies, the GWS propagates a wave of green signal time to maintain the speeds of
vehicles without braking.

In this paper, we propose the process of bounded information accessibility to develop an analogy with real world traffic
systems. Our suggestion reflects an information restriction that is based on the notion that every traffic system can manage
an entire range of signals to simultaneously interlock every intersection [37,40]. To describe the information restriction in
the traffic system, we introduce divided GWS (D-GWS). This strategy is considered to be a type of decentralized control
system with independently divided sections. The D-GWS regulates the coupled range of the GWS from the entire map to
specific rectangular divisions, which facilitates the role of each section as an independent local system; thus, the entire
map is composed of numerous independent divisions. This local effect can have an enormous influence on macroscopic
quantities, such as flow and wait time. If we attempt to divide the entire map into x × y independent rectangular divisions,
we obtain Nx × Ny divisions, where Nx = N/x,Ny = N/y, and x and y are divisors of N . Then, we independently apply the
GWS to each division. This procedure is expressed by D-GWS(x, y); for example, 8× 8 D-GWS(2, 4) indicates that the 8× 8
ChSch model is divided into a series of 2× 4 rectangular divisions, and each section is independently governed by the GWS
(refer to Fig. 2(b)). One of the 8 × 8 D-GWS extreme cases is the 8 × 8 D-GWS(8, 8), which exhibits the same behavior as
the 8 × 8 GWS. From Appendix B, we see that the extreme cases of our model yield results that are similar to the results of
the previous GWS study [1].
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Fig. 2. (a) Diagram of normal 8 × 8 GWS, (b) and (c) are examples of 8 × 8 D-GWS, D-GWS(2, 4) and G-GWS(4, 4), respectably. The D-GWS applies GWS
to each section independent, thus there are individual starting points for each section. The red line is taken to be the boundary of each section. T in diagram
denotes the cycle time, namely offset parameter Tdelay . The character in each cell represents when the light goes green. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Throughout this paper, we identify rectangular divisions, which can completely cover the entire map. The width and
height of each section should be one of the divisors of N. For the N × N ChSch model, d(n)(d(n) + 1)/2 section types
are possible, where d(n) denotes the number of divisors of N . By definition, N × N D-GWS(N,N) is identical to N × N
GWS and N × N D-GWS(1,1), which gives a perfectly synchronized state with N = 1 or a random state. Compared with
the GWS, some vehicles have to stop between sections that are independently controlled, which suggests that a vehicle
would be blocked when the vehicle progresses to another section because the individual sections cannot work together.
We refer to this phenomenon as a phase gap in the D-GWS. Clearly, the D-GWS is less efficient than the GWS, which is
represented by the mean flow. Therefore, the area of the section should be proportional to the efficiency because the D-
GWS with a large section has a less effective phase gap, which can cause a decrement in efficiency. Because the section area
is an important factor in terms of traffic efficiency, we can conjecture that a critical point of the traffic efficiency exists in
regard to the section area that depicts the phase transition. We can also explore the case in which the section areas are
similar but have different widths and heights. To investigate in more detail, we define a parameter named the symmetricity
S, which is used to compare the efficiency between identical section areas. The symmetricity is the simple ratio between
the width and the height for the rotation symmetry of the D-GWS, which is defined by b/a where a and b is a length of
shorter side and longer side of rectangular section, respectively. Thus, symmetricity is always greater than or equal to 1. For
example, the symmetricity of the D-GWS(3, 27) is 9, same as D-GWS(27, 3). A symmetricity of 1 indicates that the section is
a perfect square. Our modified ChSch model is based on plausible interactions; due to its simplicity, it is robust with respect
to parameter variations. Therefore, it is suitable for drawing conclusions about the possiblemechanics underlying the effects
of section area and symmetricity.

3. Simulation results

We set the maximum velocity vmax = 5 and the street length L = 50. To prevent model artifacts, an arbitrary and small
amount of irregularity is needed. This irregularity is introduced by the random parameter p = 0.1 for the simulation. Based
on these constant variables, the parameters that can affect the mean flow of the system include the density, area of the
section, and symmetricity of the section. We use the two density parameters 0.05 and 0.7, which are representative of the
free-flow phase and the jam phase, respectively. The meaning of the GWS (and the D-GWS) could not be applied to the
system with high density due to a regular jam. However, the GWS shows a significant effect with the proper Tdelay even in
the jam phase from the previous study [1] without departing from the concept of the GWS in the high-density case. The
preservation of the concept of the GWS is detailed in Appendix B.

3.1. Fixed symmetricity

We fix the symmetricity of the divisionwith the D-GWS to exclude the influence of symmetricity on the traffic efficiency.
The purpose of our study is to determine the relationship between the section area and the variation in the velocity-mean
flow D which is substitution for the mean flow J and the critical point, which indicates the phase transition of the system
efficiency. First, we introduce the parameter D, which is a rate given by D = ∆J/∆A for each point. Fig. 3 shows both J
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Fig. 3. J (top) and D (bottom) vs. the section area of D-GWS with different vehicle density. The graph shows two similar yet different forms at low and
high densities. Low density of D-GWS shows a continuous falling curve ending up with stable state of zero D value. Conversely, high density of the D-GWS
divides clearly into two phases, sharply decreasing phase and stable phase with zero point. The results imply that there is a critical point which makes
extension of the area meaningless. Mean flow is measured by taking the average of the vehicle velocity delivered by traffic cycle time T = 1 to T = 150.

and D versus the area of the section in 36 × 36 D-GWS with four different densities. In the graph, the symmetricity of the
four cases is fixed at 1; thus, each of the data points is the J and D value of 36 × 36 D-GWS(1, 1), 36 × 36 D-GWS(2, 2),
. . . , 36× 36 D-GWS(36, 36). In regard to D, first-order phase transitions occur in the high-density phases; the second-order
phase transition represents themean flow J . We observe thatD deceaseswith an increase in the section area. A specific point
exists at which D is maintained near zero after that point. No contribution to the mean flow with an increase in the section
area after the critical value is observed because D follows the level of contribution from the extension of the section area.
We can also predict and verify the diminishingmarginal rate of area extension prior to the critical value.We have conducted
the simulation using various densities and achieved similar results with distinguishable high- and low-density cases (we
have not shown the other cases). In Fig. 4, we explore the effect of lattice size and the critical point of section area with the
symmetricity value S = 1. We figure out that section area has a huge contribution to the mean flow, however, section area
after the critical point has a tiny contribution to the mean flow. Although we apply various lattice sizes, crossover always
occurs at around D-GWS(4, 4).

For further analysis, we only focus on representatives of the free-flowphase and the jamphasewith densities ofρ = 0.05
and ρ = 0.7, respectively. Qualitative differences between the D-GWS for the densities ρ = 0.05 and ρ = 0.7 are identified.
In the early part of the casewithρ = 0.05,D is lower and decreases to zero in a smoothermanner than in the case ofρ = 0.7.
The separate phases are relatively distinct for the case of ρ = 0.7. The value of D significantly decreases before it reaches a
fourth point (D-GWS(4, 4)) and remains nearly zero in the remainder of the range. Recall that D is a unit of the efficiency of
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Fig. 4. Mean flow J vs. section area with various lattice size. Section area makes a huge contribution to the mean flow J in earlier part of graph, however,
the section area makes a very tiny contribution to the mean flow J in later part of graph, regardless of lattice size. Therefore, the mean flow is plodding
along with near flat line growth after the fourth point(D-GWS(4, 4)). We plot the figure based on the map size N = 36, 48, 60, and 72 with the fixed
symmetricity value S = 1, where random parameter p = 0.1, the vehicle density ρ = 0.7, and offset parameter Tdelay = −55.

Fig. 5. Vehicle speed histogram of 36 × 36 D-GWS(c, c) with ρ = 0.7 and T = 50, where c is (a) 1, (b) 3, (c) 4, and (d) 36. Red, orange, yellow, light
green, green, and blue color represents cars in speed 0, 1, 2, 3, 4, and 5, respectively. Total number of the vehicles Nv is 89192. Because all of the D-GWS
has more than to 60 thousands vehicles with speed 0, the part of the histogram lower than 6.0 × 105 is leaved out for graph interpretation. We can check
the periodic fluctuation induced by T , which yields overall decrease of mean flow. This negative effect is maintained in larger section area, but suddenly
vanishes in D-GWS(4, 4). Inmicroscopic view, there is only subtle difference between crossover point D-GWS(4, 4) and full scope D-GWS, D-GWS(36, 36).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the area increment, and D remaining zero suggests no effect of the section area extension. This result implies a difference
in the diminishing marginal rate of the area extension between high-density and low-density cases, which is reasonable
because no disturbance to other cars occurs in the free-flow phase. The only influence on the effect on deceleration comes
from the traffic signals; therefore, the effect of the phase gap among sections becomes a significant factor and requires an
external driving force to continuously maintain the relatively high value of D. In the case of the jam phase, the condition
of the system is completely different because the vehicle should experience the collision with other vehicles. Due to the
congestion, the early stage of the area extension will significantly increase the mean flow in the jam phase, which results in
the high value of D. From the D-GWS, we can investigate the relationship between the section area and the traffic efficiency.
The result is the critical point whereby the phase transition is produced, in which the area extension cannot serve a large
role in terms of increasing efficiency.

From Fig. 4, D-GWS(4, 4) point is critical point, which means that the mean flow phase over section area shifts from
increasing state to flat state. We analyze the vehicle speed histogram to take a closer look at behavior of vehicles with
microscopic view in Fig. 5. There is only subtle difference between D-GWS(4, 4) case and D-GWS(36, 36) case. It indicates
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Fig. 6. Two variations of 36 × 36 GWS systems are presented to examine the alteration of critical point when two global parameters, maximum velocity
vmax and street length L change. Tdelay values for different global parameters are obtained from analytical calculation [1]. (top) Various maximum speeds
vmax = 5, 10, 25 are tested in GWS with ρ = 0.03. Tdelay is 10, 5, and 2, respectively. With the increase in vmax , the critical point moves to higher section
area. The case of extremely high vmax shows that section area expansionmakes no contribution tomean flow. (bottom)Various street lengths L = 40, 50, 60
are tested in GWS with ρ = 0.7. Tdelay is −44, −55, and: −66, respectively. We check out that the critical point shifts from the fourth point to the fifth
point in the case of shorter street length.

local congested states are decentralized independently. We are sure that D-GWS(4, 4) size is the specific size enough to
unwrap the jam state. Therefore, the outbreak of crossover at D-GWS(4, 4) is an inevitable conclusion. From the argument,
we can infer that the shift of critical point depends only on the global parameter, such as maximum velocity vmax and street
length L. We analyze the critical point displacement for global parameter variation and show the results in the Fig. 6. It
indicates that two global parameters can make movement of the critical point. Variation of two global parameters is under
the rule of making the most outperformed GWS because we need to maintain the property of the original green wave
strategy [1]. Exceptionally, phase transition phenomenon suddenly slips away at the case of vmax = 25 (ρ = 0.03, L = 50).
Maximum velocity 25 over street length 50 is very unrealistic (corresponds to 675 km/h). Also, it is not applied to analysis
of D-GWS because the system is changed to one-shot game, namely, vehicle can escape the simulation map at one go. It is
the rationale for disappearance of phase transition.

We show the snapshot of D in two stages: the early stage of the area extension and the late stage of the area extension.
Fig. 7 includes the snapshot of (a) the early stage of the area extension and (b) the late stage of the area extension in the
free-flow state (ρ = 0.05). Fig. 8 shows the snapshot of (a) the early stage of the area extension and (b) the late stage of the
area extension in the jam state (ρ = 0.7). In Figs. 7 and 8, we conclude the existence of two phases in both cases, which
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Fig. 7. Snapshot of 4 × 4 D-GWS for checking the effect of area extension in free-flow state. The picture (a) shows the early stage of area extension and
displays the variation of the vehicle speed. The picture (b) shows the late stage of area extension and displays no change of the vehicle speed.
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Fig. 8. Snapshot of 4× 4 D-GWS for checking the effect of area extension in jam state. The picture (a) shows the early stage of area extension and displays
the variation of the vehicle speed. The picture (b) shows the late stage of area extension and displays no change of the vehicle speed.

Fig. 9. Symmetricity S vs. mean flow J in map size 36, 48, 60, and 70. The relationship between two parameters is an inverse proportion. The graph
indicates the low symmetricity, namely more squared form section, is more efficient to the traffic system.

actively changes the mean flow below the specific point of the section area, whereas no change in the mean flow occurs
above the specific point.

3.2. Fixed section area with changing symmetricity

As previously mentioned, various cases include identical section areas. We have introduced the symmetricity, which
is a type of aspect ratio of the rectangular pieces, to distinguish these pieces. In this section, we focus on the property of
symmetricity and establish the relationship between the symmetricity and themean flow J under the same area conditions.
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Fig. 9 shows the relationship between symmetricity S and mean flow J with the fixed system size. For instance, the case of
N = 36, five points on Fig. 9 indicates D-GWS(6, 6), D-GWS(9, 4), D-GWS(12, 3), D-GWS(18, 2), and D-GWS(36, 1), which
symmetricity value of 1, 2.25, 4, 9, and 36, respectively. The results of Fig. 9 indicate that the symmetricity is inversely
proportional to themean flow. Although there is small fluctuation in the lowvalue range, there is strictly inverse relationship
between S and J . One can analyze the results for the magnitude of the symmetricity, which indicates that the higher the
symmetricity value is, the longer the adjoining edge is, which causes the low J with a strong phase gap. This explanation
demonstrateswhy the lowest symmetricity value, i.e., square formed section, yields the highest J . The square formed section
encompasses the smallest perimeterwith the given area. The fitted line is a curvewith an inflection point instead of a distinct
descending line; however, the difference in J is very small over the low S values. We have performed the same process using
different D-GWS and observed the same tendency regardless of the map size. Consequently, J decreases according to the
increase in the symmetricity value.

3.3. Comparison between empirical data and numerical simulation

A superior theory would have to reproduce the empirical findings equally well with fewer parameters to obtain a better
quantitative agreement with the data using the same number of parameters or reproduce additional observations [5]. In
this section, we attempt to compare the simulation results with the empirical data. The description of the data is as follows:
(1) The monthly data for the average speed on urban arterial highways are supported by Seoul local government figures.
(2) The data points range from January 2004 to June 2010. Data for 2007, March 2006, and May 2008 were excluded due to
data loss. (3) The total number of data points for 25 districts and 64 months is 1600. The description of the data is detailed
in Appendix C.

To exclude the irregular effect resulting from various conditions, such as weather, construction, and natural disasters,
we average all data points for the vehicle speeds in each district. Each value of the area of the district is obtained from
the government figures. However, we should calculate the area and symmetricity of each section for each district. Straight
alignment of the rows is difficult, and there is no exact integer value due to the irregular shape of the sections. Thus, we use
a polygon approximation. A complete explanation of the methods in our analysis is provided in Appendix C.

Using the findings from the empirical data, we plot two graphs: mean flow versus section area (Fig. 10) and mean flow
versus symmetricity (Fig. 11). In addition, we add the simulation results in terms of the mean flow versus section area to
facilitate the comparison with the empirical data (Fig. 4). From Fig. 4, the mean flow proceeds with near flat-line growth
after the specific point of the section area, which indicates no contribution by the extension of the area to the mean flow,
as observed in the graph of empirical data. We can predict the flatness because the empirical data is large enough to show
nearly 0 value of D. We divide each sector by urban arterial highways, and each intersection is usually separated by 1 km or
more. According to NS model [33,34], the length of a single cell is set to 7.5 m. The street of original toy model is consisted
of 50 cells (L = 50), therefore total length of one district in simulation model is around 375 m. From the above calculation,
we can check that the section of real world is greater than 3 × 3 section in the simulation. Thus, we infer that the flatness
can be happened because the section area of the empirical data is near the critical value D-GWS(4, 4). The red fitting line
tends to become flatter with an increase in the section area, especially toward the EP point.

In the previous section, we observed the effect of symmetricity on the simulation results of the mean flow, as shown
in Fig. 9. We also obtain the inverse relationship between the mean flow and symmetricity in the empirical data graph, as
shown in Fig. 11, especially from point GJ to point GB. An increase in the symmetricity value reduces the traffic efficiency,
with a significant reduction in the mean flow. Therefore, we can conclude that two parameters the section area and the
symmetricity play a significant role in improving the traffic efficiency in terms of the mean flow, which is supported by the
numerical simulation and the empirical data analysis. Based on this finding, we must consider two important parameters
when we study or design traffic systems.

Identical outliers are detected in the two graphs in Figs. 10 and 11: YS, DJ, GC GN and J. Points that stray from the average
fitting line but follow the overall tendency are also observed. We analyze the points that are located too far from the line
but that maintain the tendency of the entire set of data. As shown in Fig. 9, YD, MP and SD are large positive-deviated points.
These three points generally exhibit low symmetricity value. Based on this low symmetricity value, the three points exhibit
very high traffic efficiency and also maintain the properties of the graph. GA and GB indicate perfectly opposite phenomena
because the two points exhibit high symmetricity value. We investigate why the outliers cannot follow the property of
the other points. GN, YS and J are notorious for being chronically congested. GN always experiences heavy traffic due to
overpopulation. YS and J lag behind other districts with respect to road conditions and also serve as transport centers. DJ
and GC have no well-known characteristics of a traffic system. Thus, we can conjecture that the two districts utilize their
own inherent properties to control the traffic efficiency. The explanation of this phenomenon is expected to attract various
ideas that may reveal previously unknown important factors.

4. Conclusion

In this paper, we have investigated the effect of the divided GWS for the analogy to the bounded information accessibility
problem in the realworld. Each of the independent rectangular sections is representative of information restriction; thus, the
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Fig. 10. Mean flow J vs. averaged section area of district in the empirical data. Before the curve reach the EP, the graph is prone to coincide with the
simulation result (Fig. 9). After the point of EP, the graph is influenced by YS very effectively. YS is one of the representatives of irregular points. YS, DJ, GC,
GN and J are outliers in the graph. YD, MP and SD are large positive deviate points and GA and GB are large negative deviate points due to the great effect
of symmetricity. The fitting equation is −28.562x4 + 79.605x3 − 83.348x2 + 39.831x + 14.561.
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Fig. 11. Mean flow J vs. averaged symmetricity of district in the empirical data. We can observe the inverse relationship between two parameters easily in
the range from GJ to GB. There are irregular behaviors with outer part of the GJ and GB, therefore, the graph is distorted with those deviations. The fitting
equation is −6.2762x4 + 83.439x3 − 362.37x2 + 641.37x − 377.78.

D-GWS is amore realisticmodel because it exhibits limited linkage due to costs and technical problems. The D-GWS has two
main parameters, the section area and the symmetricity of the area resulting from the division property and the independent
decentralized control system. Under the fixed symmetricity, the D-GWS shows two similar yet differing tendencies in terms
of vehicle density. When the vehicle density is low, the phase gap of the traffic signals between individual sections is a more
dominant factor than in the high-density case, which causes vehicles to stop. This allows the section area to be retained
as a main factor until it expands to a critical value. Compared with low-density areas, the modified ChSch model in high-
density areas exhibits a tendency to produce a clear phase transition. Therefore, we can analyze the clear phase transition
phenomenon, which suggests a significant contribution to the mean flow with the interlocking effect in the early stage
of area extension. However, it is meaningless to expand the section area above the critical point. In the D-GWS with a
fixed section area, the symmetricity varies as a function of width and height. We have observed that the impact of the
symmetricity for a fixed area creates an inverse proportional relationship between the symmetricity value and the rescaled
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J . Low symmetricity value with a relatively lower perimeter causes an increase in J . The symmetricity becomes important
in situations with locally high density regions. Although it only acts locally, the symmetricity can have a strong impact on
global quantities such as flow.

Based on our research, we have determined that the empirical data correspond with the simulation results despite a few
outliers. The results are reasonable because Seoul is one of the biggest cities in the world.

The D-GWS generates critical points due to the change in section area and symmetricity. It can lead to a compromise
between efficiency and technical costs. Although the method cannot overcome the role of the pure GWS with respect to
the mean flow due to the existence of the phase gap to reduce the mean flow, the D-GWS exhibits various effects in the
sections resulting from changes in the section area and the symmetricity. We confirm that we can obtain sufficient mean
flow when solving a traffic problem with a smaller section area compared with the original GWS and that the smallest
symmetricity is optimal in terms of the efficiency of a traffic system. Our study considers the trade-off between efficiency
and cost. When an urban planner designs city roads with limited resources, he or she should try to balance efficiency and
technical limitations using section areas and symmetricity. Follow-up studies may demonstrate the need for the D-GWS to
change from an independent decentralized version to a self-organized decentralized control system. By tracing the causes
of abnormal behavior from the empirical data, another major factor of traffic efficiency can be determined.

Appendix A. Detailed model description

The velocity update rule of the modified ChSch model for nth vehicle is followed by Ref. [1]. :

Step 1: Acceleration

vn → min(vn + 1, vmax). (A.1)

Step 2: Deceleration

Case 1: The next traffic light is red for nth vehicle

vn → min(vn, dn − 1, sn − 1). (A.2)

Case 2: The next traffic light is green for nth vehicle

If the next two cells directly behind the intersections are occupied

vn → min(vn, dn − 1, sn − 1), (A.3)

Otherwise

vn → min(vn, dn − 1). (A.4)

Step 3: Randomization with the probability p

vn → max(vn − 1, 0). (A.5)

Step 4:Movement

xn → xn + vn, (A.6)

p is a randomization probability, xn denotes the position of nth car, dn = xn+1 − xn, the distance to the next car and vn
represents the velocity of nth car. Finally, sn indicates the distance between the traffic lights and nth car. The case 2 of step 2
makes a vehicle possible to occupy intersections if and only if it assumes that the vehicle leaves the intersection in the next
step.

Appendix B. D-GWS in various density conditions

We try to figure out the property of D-GWS. First, we check out whether the extreme cases of the D-GWS have analogy
with the original GWS. We can confirm that the expansion of D-GWS is same as the original GWS from Fig. B.1. Second,
to demonstrate the preservation of the concept of the GWS, we try to test the offset effect on various density conditions,
ρ = 0.1–0.9. Fig. B.2 shows the nine cases of the density from ρ = 0.1 to ρ = 0.9, respectably. From the results, we can
conclude that offset parameter Tdelay = 10 is the best in low density while offset parameter Tdelay = −55 is the best in high
density.
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Fig. B.1. Mean flows J vs. cycle time T in 36 × 36 D-GWS. The character d means length of square division, thus each curve represents D-GWS(36, 36),
D-GWS(6, 6), D-GWS(2, 2), and D-GWS(1, 1). D-GWS(36, 36) shows the same behavior as the 36 × 36 GWS in the Ref. [1], and D-GWS(1, 1) shows the
same behavior as the perfectly synchronized state with one single intersection in the Ref. [1]. We set the random parameter as p = 0.1 and the density as
ρ = 0.7.

Fig. B.2. Mean flow J vs. section area of D-GWS on various density conditions. Each point on the line represents offset 10(blue), 30(green), and −55 (red)
with respective section area. Regardless of the section area of D-GWS, there are dominant offsets in both low and high density, offset parameter Tdelay = 10
and offset parameter Tdelay = −55. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Appendix C. Detailed empirical data analysis method

We consider average vehicle speed as the mean flow because the mean flow represents the amount of how well does
vehicle go forward. We extract the data points from independently controlled 24 districts in Seoul, Korea. In Fig. C.1(b), we
sketch the whole map of Seoul and mark the each district with designate, for example, ‘GN’ represents ‘Gang-Nam’. Each
district is governed by authority of autonomous district and is followed by ‘Gu’, for instance, ‘GN’ is called by ‘Gang-Nam
Gu’. There are also many independently functioning sections as to traffic in each district, which is depicted in Fig. C.1(a). The
sections in each district is classified by urban arterial highways, given the fact that urban arterial road has only traffic lights
at entry and exit gate and functions its role independently in Seoul [39].

To identify two main parameters, section area and symmetricity, we should calculate the area and symmetricity of all
sections. It is impossible for street in the reality with simple calculation method given that almost of all shape of sections
are irregular. The point leads mismatches between real world and the ideal numerical simulation. We use the concept of
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Fig. C.1. The figure shows the map of Seoul(b) and an example of GJ for separating the sections. Seoul is consisted of 24 independent districts which
are controlled by authority of autonomous district. We set up the boundaries on each district according to urban arterial highways. If there are river and
mountains in the district, they are excluded from the calculation.

Table C.1
The table includes statistics from the empirical data. Mean flow indicates that the average vehicle speed
on the urban arterial highways in each district. Symmetricity is calculated by dividing longer side of the
rectangular sector into shorter side. Sector size is averaged out with all sections in each district except for
river and mountains, based on the boundaries of the urban arterial highways.

Number District Mean flow Symmetricity Sector size

1 J 17.76 1.510 0.298
2 GB 18.78 2.423 0.742
3 DB 19.83 2.311 1.200
4 JN 19.90 2.077 0.226
5 GN 19.95 1.478 0.468
6 GA 20.02 2.625 0.713
7 DM 20.72 1.744 0.431
8 GD 20.78 2.077 0.905
9 GR 21.18 2.180 0.433

10 JL 21.33 1.733 0.538
11 YC 21.49 2.004 0.471
12 SM 21.54 2.171 1.102
13 EP 21.62 2.193 1.000
14 NW 21.62 2.174 0.406
15 SC 22.05 1.648 0.517
16 SB 22.55 1.974 0.878
17 GS 22.61 1.912 1.328
18 GC 22.65 3.511 0.433
19 SP 22.70 1.638 0.454
20 DJ 23.06 2.682 1.132
21 GJ 23.13 1.762 0.665
22 YD 23.79 1.747 0.275
23 MP 24.93 1.917 0.552
24 SD 26.12 1.802 0.789
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minimum bounding box to resolve the conflict [41]. Among various methods, we apply the elongatedness, which is ratio
between the length and width of the region bounding rectangle [42]. The elongatedness serve as an extended concept of
symmetricity. The process is following: First, we make the rectangle of minimum area that bounds the shape, which is
located by turning in discrete steps until a minimum is located. Second, wemeasure a ratio between the length andwidth of
the rectangle. The ratio is frequently used in various disciplines [43,44]. From Fig. C.1(a), we easily can check that there are
various concave or convex polygonal region. Following the above mentioned process, we transform a concave polygon into
a circumscribed quadrilateral. When we handle a convex polygon, the convex polygon is divided to two concave polygons.
(See Table C.1.)
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